Networking the Many, Tiny and Far Away

Kevin Fall, PhD
ICCCN 2018, Hangzhou, China
kfall@ieee.org
Early Challenges

- Moving information faster & farther than people
- Approaches
 - Put messages on faster beasts
 - Use light (e.g., smoke signals)
 - Use sound (e.g., drum signals)
 - Use water (e.g., hydraulic telegraph)
- Most of these have limited distances
 - And are point-to-point
 - Not always highly practical

Hydraulic Telegraph of Aeneas
4th Century BC, Greece
The Chappe Telegraph

- France and beyond, ~1792 - 1846
 - Semaphores – 500 mph and 2-3msgs/min
 - Routers every 10-15 miles / forming a network
 - Dependent on human operators

- Benefits
 - Message could reach large distances fairly quickly
 - Difficult to forge messages (message integrity)

- Impediments and challenges:
 - Good weather (visibility) required
 - Daylight required
 - Easy to intercept; “supported” steganography (!)
 - Not so mobile/tiny; expensive to run
Chappe Telegraph (architecturally)

• Architecturally, this system had
 • Source coding
 • Control signals
 • Synchronization
 • Flow control
 • Error correction and detection
 • Selective ACK/repeat

• Some of these ideas appeared > 100 years earlier:
 • Robert Hooke, “On Showing a Way How to Communicate One's Mind at Great Distances”, 1684
Electrical Telegraphy (1840+)

- Use electricity to send messages
- Basic components available by early 1800s
 - Volta’s voltaic cell, galvanometer, and e-magnet
 - But the effect of electricity degraded significantly with distance
 - Joseph Henry solved this by 1830 but Morse didn’t know (yet)

- Benefits
 - Cost reduction of perhaps 30x versus optical telegraphs
 - No weather or daylight or direct LoS issues; 24/7 operation
 - Low latency – (replaced pony express in US by Oct 1861)
 - Enormous scale; even a form of TDMA (Baudot) / msg switching

- Impediments:
 - Multiple wires in common conduit with degrading insulation
 - Confusion and suspicion
 - Repeaters

Note: famous patent case 1854 – Morse v O’Reilly
Telegraphy and Cryptography

• Messages encoded first for compression (to save $)
• Codes for privacy (and compression) of telegrams
 • Use of codes differed significantly among countries
 • And many were business-specific (see talks by S. Bellovin)
 • In 1864, founding of ITU, standardized & allowed codes
 • In the US, earlier (1845) due to commercial use
• And...concern about the low latency as a threat
 • Routine information could now be sensitive
 • (e.g., ship departure records out before ship departs)
The Telephone

• In 1875, Bell was working on the harmonic telegraph
 • Basically, FDM for multiple simultaneous telegraphy sessions
 • Ultimately he patents the telephone Mar 1876 (inventor?)

• Benefits
 • No operators required at endpoints
 • More rapid (15-20 wpm becomes more like 200 wpm)
 • No explicit per-message costs

• Challenges
 • Needs a circuit; quality of service over distance
 • Easy to intercept / harder to encode/cipher
 • Scale
 • Resource management of trunk lines ("operators")
 • Electromechanical switching
The Telex Network

• Started in 30s, popular in post-WWII
• Special network for delivering messages among teleprinters – binary voltages; not phone network
• First standardized worldwide network of its kind
 • 50 baud (~66 wpm)
• Transitioned to phone lines and modems
 • Ultimately replaced by FAX in 1980s (pictures!)
 • But still a hobby for some (“telex over Radio – RTTY”)
• Automated message switching (“InfoMaster”)
 • With machine-generated ACKs (unlike G2 FAX!)
Understanding Channel Errors

• A formal mathematical understanding of communication channel impairments was lacking...

• Claude Shannon (1948)
 • Modeling of noise in an errant [bit changing] channel
 • A theory of information and entropy measure
 • Coining of the term ‘binary digit’ (bit)

• Really defined the limits of communication
 • And appropriate performance measures
 • Greatly affected thinking on cryptography
The Digital PSTN

• Using ‘bits’ a possibility of ‘error-free’ long distance transmission became possible (Paper: “Philosophy of PCM”)

• Phone network evolution to digital core
 • Transition in the 1960s (tech: fiber optics, transistors)
 • Addressed problem of cumulative degradation in analog
 • Repeaters could re-construct the signal perfectly
 • Assuming sufficient S/N ratio, reduces noise

• Electronic switching replaces electromechanical
• ‘Last mile’ remained analog (still is in many places)
Where Are We?

• Long distance – drums to optics to digital
• Scale – p2p links to global telephone network
• Reliability/resiliency – acknowledgements, retransmission, digital repeaters, coding
• Security – mostly codebooks and codewords

• So its about the 60s now.
 • And the many, tiny and far away ... aren’t always people
Early M2M and Packet Networks

- The ARPANET – sharing resources using a network
 - An experiment in packet switching to provide resilience
 - Dynamic routing, statistical multiplexing (queues)

- X.25 and Minitel (1978 to 2012)
 - Packet switching supporting virtual circuits
 - Resiliency through re-routing; fixed window
 - Minitel – successful French personal services (social)

- The Internet – a "concat"-ed network ("catenet")
 - Short-term store and forward, packet format, gateways
 - Datagram service (no per-connection state) -> M2M!
The Many – Machines/People/Data

• Metcalfe’s “law”: net effect is $O(n^2)$
 • Validated with Tencent data (2015) [Zhang, Liu, Xu]
 • Supported Metcalfe’s own Facebook analysis of 2013

• Changes in scale affecting networking pushed by
 • Internet growth – especially mobile / cellular
 • Hyperscale Data Centers – especially ‘big data’ and ML
 • Security & Social Networks – worldwide control & trust
 • IoT (maybe?) – are the predictions true?
Cellular is for Mobile Internet

• Cellular started out to support voice calls
 • TDMA popular as a basis for channel allocation
 • “Crazy” idea of CDMA offered alternative
• By late 90s started to appreciate Internet (data)
 • And would adapt the network architecture appropriately
 • Many people could get cellular easier than fixed lines
• By 2008-2012 and 4G, there is no more debate
 • LTE changes to IP-based core with gateways (EPC)
 • 5G – use-case segmentation (M2M, broadband, IoT)
And its still going...

NUMBER OF SUBSCRIPTIONS PER 100 INHABITANTS/HOUSEHOLDS

Note: The figures for 2016 are ITU estimates.
Data Centers- Scale by Copying

• Roots in, yet quite different from, main frame DCs
 • Similar building, security, cooling, power, etc.
 • But DC is about *scale*: compute, storage, & networks
 • (“cattle not pets”) -> avoid cumbersome specialization

• Individual hosts/computers do not really matter
 • So no need to own your own computers / DCs
 • And really, the same applies for networks
 • NFV (and SDN sort of) makes networks ‘just an application’
 • That benefit from all the cloud/DevOps computing tools

• Related to ‘serverless’ (and maybe intent-based)
DC Growth

Security & Social Networks

• Security traditionally the ‘CIA triad’ for a system
 • Confidentiality, integrity, availability
 • Accomplished with codes, retransmission, rerouting
• But the cryptographic foundations don’t fully help
 • Errors in implementation (software bugs/exploits)
 • Erroneous or misleading information content
• Solutions here stretch beyond networking/systems
 • Reputation systems and provenance
 • Social science and perhaps decision theory/game theory
 • Like we have with ‘behavioral economics’?
The Tiny

• Early 2000’s brought interest in wireless sensor networks: “smart dust” and “motes”
 • Focused on limited computing, power, and range
 • Clever inter-mote protocols and implementations
 • Progenitor of today’s IoT (Internet of Things)
• 2001 NAP “Embedded Everywhere”
IoT – Managing Tiny Machines

• Cloud frameworks to coordinate small devices
 • And a ‘Function as a Service’ model includes them

• Networking requirements
 • Local low-latency reactions (e.g., industrial)
 • Tolerance of disconnected operation
 • Edge processing before cloud upload (e.g., in MEC)
 • Security and privacy of the data
 • Some data maybe never goes to the cloud

• Assumes better hardware than in 2001...
 • Basically, a Raspberry Pi+ (ARM, x86, 1GHz, Linux)
The Canonical IoT Architecture
LoRa and MQTT - IoT Protocols

- When WiFi, LTE and 6LoWPAN don’t quite cut it...
 - Well, 2G might, but its going, going,gone
- LoRaWAN – low-power wireless WAN tech
 - M2M, mile-long ranges, long endurance (decades)
 - Unlicensed spectrum
 - Strong restrictions on size, rate, uplink/downlink, etc.
- MQTT: M2M connectivity protocol (OASIS)
 - Simple pub/sub protocol on top of TCP/IP + TLS/SSL
 - Used with AWS, Azure, Google, Salesforce, IBM
Example: Amazon Greengrass

- Programming & deployment extension of Amazon’s IoT Core functions – networking + framework
The Far Away: Space

• Arthur C. Clarke – “Extra-Terrestrial Relays” – 1945
• Sputnik launched – 1957
• Project ECHO – 1960 – see movie ‘The Big Bounce’
 • Goldstone, CA (genesis of NASA’s DSN) to Holmdel NJ
 • Realizing a vision of John Pierce
• Telstar 1 – 1962 – telephone and video

ECHO I

Telstar I
Satellite Data Networks

• Much satellite communication is ‘bent pipe’
• Modern: LEOs or MEOs, some with cross-links
 • Smaller satellites, polar orbits, lower latency
 • Providing Internet delivery (not TV or phone)
• SpaceX’s Starlink
 • Ambitious 12,000 satellite network – 200mi/700mi up
 • Optical cross-connects; beam-formed antenna links
• OneWEB
 • 882 satellites, *not* using crosslinks (regulations)
Far Out.... literally

- Beyond cislunar space, node density is low
- So, ‘networking’ has a different flavor
 - Very long latencies ; very limited comms assets
 - End-to-end retransmission not very practical
 - Bandwidth asymmetry may be extreme
 - Mobility may be highly predictable
 - Security (esp. integrity and availability) critical
 - Power – limited (solar) or not-so-limited (RTGs)

- DTN architecture addresses these issues and more
Observations

• Original challenges were simply communicating over distances (fires, drums, Chappe telegraph)
• Next were about latency and secrecy
• Then about scale and availability
 • And networking entered the modern software era
• Now biggest concerns are largely about content
 • Analysis and interference / ML
 • Security, privacy, “fakeness” of data
Thanks

kfall@ieee.org