Adapting to Change Routing in a Future Internet

Kevin Fall

kfall@acm.org

Routing Problems as Graph Problems

- Euler's Seven Bridges of Königsberg (1736)

Some Basics on Graphs ($G=(V, E), n=|V|, m=|E|)$

- Connected simple graphs ($m=O\left(n^{2}\right)$) - single edges, connected
- Might be edge-weighted, might be directed or not, or acyclic
- Single Source Shortest path (Dijkstra) on weighted (+) graph: O(m+n log n)
- Bellman-Ford also allows for negative edge weights [not cycles] O(nm); Also see Yen [1971]
- All-pairs shortest path (Floyd) : O $\left(\mathrm{n}^{3}\right)$ [negative edge weights ok]
- MST (Primm) : O (m + n log n) or O(m log n) // MST (Kruskal) : O (m log n)
- Chazelle (1991) O (m $\alpha(m, n)$) [α is inverse Ackermann function ~ constant < 4]
- BFS and DFS : $\mathrm{O}(\mathrm{m}+\mathrm{n})$ [list] or $\mathrm{O}\left(\mathrm{n}^{2}\right)$ [adjacency matrix]
- Max flow : O(mn) [lots of others]; Disjoint SPs (Suurballe) O(m + n log n)
- HMM most likely path (Viterbi) : O($n^{2} \mathrm{~T}$) [T observations, n states]
- NP-complete: Hamilton Circuit, TSP, capacitated MST, longest path, Steiner tree, degree-constrained Steiner tree

Graphs and Routing

- Finding a routing is an assignment R on $\mathrm{G}(\mathrm{V}, \mathrm{E})$ that provides paths $\pi(s, d)=\left\{e_{1}, \ldots, e_{n}\right\}$ between vertices s and d; usually with some associated cost $C(s, d)$ [which is often a sum: $\left.C\left(e_{1}, e_{2}\right)+C\left(e_{2}, e_{3}\right)+\ldots\right]$
- See definition for R in Brady/Cowen for additional formality
- We're primarily concerned with the the computational cost and possibly memory required to compute paths
- Commonly we compute 'shortest' paths from all s to d that minimize the costs. This is the All Pairs Shortest Path (APSP) problem.
- Often a distributed solution... think OSPF or distance-vector
- This is a form of self-adaptation that operates well given certain limitations

Incrementally Adapting to Change

- Given a collection of shortest path(s) on a graph, what's the complexity to compute new one(s) if the graph changes?
- Fully dynamic - allows edges to be deleted or added to graph
- Versus incremental or decremental (add or delete edges only) which have other algorithms
- What complexity to answer the questions $\mathbf{1 >} d(u, v)$? and $2>$ perform an update?
- Obviously, can always just re-compute as new static graph
- Demetrescu and Italiano (2003) : amortized $O\left(n^{2} \log ^{3} n\right)$ - fully dynamic APSP algorithm for digraphs with non-negative edge real edge weights
- Also: dynamic SPSP at least as hard as static APSP
- O(1) query time
- Thorup (2005) : O ($\mathrm{n}^{2+3 / 4}$) update complexity (deterministic algorithm)
- Abraham, Chechik, Krinninger (2016) : $O\left(\mathrm{cn}^{2+2 / 3} \log ^{4 / 3} n\right.$) w/prob $1-1 / n^{c} ; c>1$

Routing in the Graph - Approximations

- Almost-shortest paths can be rather useful as well. A tradeoff:

Space

- For optimal (shortest), O($\mathrm{n} \log \mathrm{n}$) switch memory required
- One output 'port' (neighbor edge) for every possible destination
- With smaller memory, must sacrifice something (e.g., stretch/correctness)
- Stretch of R is $\max \left(C_{R}(s, d) / C_{\text {opt }}(s, d)\right)$ for all costs C on path (s, d) with routing R vs opt [1 is 'best case' = optimal]

Compact Routing - (sublinear switch memory with polylog headers)

- Fact: no stretch < 3 universal CR schemes with o(n) at each node
- Universal - for any graph topology
- Thorup-Zwick (TZ) scheme (2001) for static graphs
- Delivers stretch-3 max for switch memory $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$ [sub-linear...a ha!]
- More generally, $O\left(\mathrm{n}^{1 / k}\right)$ with stretch $4 \mathrm{k}-5(\mathrm{k}>1)$
- Chechik (2013) for weighted undirected static graphs
- O($\mathrm{n}^{1 / \mathrm{k}}$) with stretch ck (for $\mathrm{c}<4$) [so better than TZ for $\mathrm{k}>=4$]
- Abraham (2004) - Name-Independent Compact Routing
- Achieves $O\left(n^{1 / k}\right) w / s t r e t c h ~ O(k)$

Special Graphs

- Particular graphs have special routings
- Some are regular special cases like grids/lattices, trees
- Or Erdős-Rényi random graphs, etc... but some aren't

Scale-free

- Of particular interest are 'complex networks' or graphs
- The related 'small world' phenomena was studied rigorously through the 60s
- Recall the 1969 Milgram experiment (many letters traveled on shortest paths)
- US population ~ small world graph -> "three degrees of separation"
- Heavy-tailed degree distribution, high clustering coefficient
- (dis)/Assortativity among vertices, community and hierarchical structures
- In technical networks, mostly dis-assortative
- Feb 2018 -> WikiPedia pages avg separation degree is 3.019

Really? (see sixdegreesofwikipedia.com)

Pope $\leftarrow \rightarrow$ Alternator

Routing on Special Graphs

- The Internet's inter-AS topology graph "appears" to be scale free: with power-law degree and clustering coefficient distributions
- Intuitively: relatively common to have very high-degree vertices
- Low-degree nodes belong to very dense subgraphs which are connected to each other by 'hubs' (high degree vertices)
- Arguably responsible for the 'small world' phenomenon
- Robust to random vertex failure; fragile to targeted vertex deletion
- Diameter is O(log log n) - very nearly constant
- Scale-freeness is controversial, but that is somewhat an aside here...

Compact Routing on Power-Law Graphs

- Krioukov, Fall, Yang (2004) - CR looks to be good on "Internet" graph
- TZ scheme shows most paths are stretch one (average about 1.1)
- Simulation and mathematical result (but no bounds proven)
- Brady and Cowen (2006) - additive stretch
- O($e^{2} \log n$) with additive stretch d (d, e are small params of the topology)
- But with $O\left(e^{2} \log n\right)$ message addresses too
- Using exact distance labelings
- Chen, Sommer, Teng, Wang (2009) - CR on power-law graphs
- Expected size $O\left(n^{8} \log n\right)$ sufficient memory for stretch 3 and $g=(t-2) /(2 t-3)$ where t is the power law exponent of the graph (typ $2<t<3$)
- Requires initial stretch-5 (max) handshake setup

Can We Get a Smaller Distributed Algorithm?

- We can get to $O(\log n)$ if we flood - but doesn't scale well
- The $\log \mathrm{n}$ then is essentially our own label
- What if we just greedily "go closer" using some coordinates
- In the simple geo location case, this is also called Geographic routing
- Each node need only store locations of neighbors and choose closer one
- Follows triangle inequality: $\mathrm{d}(\mathrm{a}, \mathrm{c})<=\mathrm{d}(\mathrm{a}, \mathrm{b})+\mathrm{d}(\mathrm{b}, \mathrm{c})$
- 'Dead Ends' become a problem - requires backtracking
- If we have a greedy embedding, we can avoid the backtracking
- That is, a mapping from the topology graph to coordinate assignments such that greedy forwarding 'just works' without backtracking

Kleinberg and related results

- There exist planar graphs that do not admit a Euclidean greedy embedding
- Greedy embedding for all graphs in a hyperbolic space (Kleinberg 07)
- Problem: the labels in doing this directly are large...O(nlogn)... so large the scheme doesn't really win inherently over non-greedy
- Eppstein and Goodrich (2008) - a succinct greedy embedding
- Use 'autocratic (balanced) binary tree' to assign positions in dyadic tree metric space
- Effectively 'discretizes' (to a grid) in the hyperbolic plane while preserving the overall coarse distance relationships (but not the exact points)

Yes, but...

- Practicalities include management, \$ costs, etc
- OSPF includes: hello/flood protocols, areas, authentication, virtual links, designated routers/backups, non-broadcast support, summarization
- Also, if I purchase a link, I want to *use* it...
- Traffic engineering and policy routing: overriding your routing protocol
- TE largely for modifying utilization (e.g., load balancing) and policy
- Match network resources to the traffic (minutes or longer)
- Stuff like: OSPF/ISIS weights, capacity planning, BGP import policy
- SR-TE (Segment Routing / Traffic Engineering)
- A generalized mechanism to help evolve from RSVP-TE (which uses RSVP to provision MPLS LSPs); see RFC 8402 [also see RFC8277 - prefix/label bindings]

Changing the Problem

- In the DTN (and ICN) worlds, looked at some different ideas
- DTN: storage and path selection; routing over time; controlled replication
- ICN: targets are data objects which reside on topology vertices
- DTN Examples
- Epidemic, ProPHET, MaxProp, RAPID, Spray \& Wait, Bubble Rap, DTLSR, CGR/SABR
- ICN and related examples
- TRIAD, DONA (crypto addresses), PURSUIT/PSIRP, NetInf (flat), SAIL, CCN/NDN (hierarchical routing)
- NLSR, DABBER (wireless)

Quantum Communication

- Quantum communication may be useful for several applications
- Confidential communications physically difficult to intercept/alter
- Communicating quantum information between quantum computers
- Goal is to distribute 'as much entanglement' as possible to users
- For supporting as high a rate of 'quantum flow' as possible
- For supporting multi-party entanglement (~ quantum multicast)
- Basics: superposition \& entanglement

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
& |\alpha|^{2}+|\beta|^{2}=1
\end{aligned}
$$

$$
\begin{array}{ll}
\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) & \\
\left|\Phi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) & \text { Bell states of } \\
\left|\Psi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) & \text { orthogonal } \\
\text { entanglement } \\
\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) &
\end{array}
$$

Quantum Communication Environment

- Qubit - a quantum bit
- Setting: transport entangled qubits in (optical) network through quantum switches (that need to preserve coherence \& store qubits)
- Qubits encoded using polarized photons, trapped ions or superconductors
- Superconductors are usually "cold," but on Feb 212019 USPTO made public a US Navy patent application for a room-temperature superconductor - we shall see!
- Challenge: the fidelity of the quantum state can erode in the environment
- When transmitted or when stored

Quantum Network Link

- Can send a qubit along a (photonic) network path: quantum link
- Distance limitation comes from several sources
- Degradation of fidelity as a function of distance (loss of coherence)
- Inability to 'just copy' as in classical memories due to no-cloning theorem
- So simple forms of classical error correction/detection do not readily apply
- Challenge in converting qubit encoding from photon to matter and back
- Distance limitation can be addressed with multiple constituent links
- This would require a form of quantum repeater or router/switch
- They can only be placed ~ 100 s or less of kms apart from each other
- Nodes contain: quantum memories, sources and processors

Entanglement Swapping

- Two sources emit entangled qubits (A, B) and (C,D)
- Take a joint measurement (BSM) of one from each source; say (B, C)

- This will cause the others A, D to fall into an entangled state
- Achieved with distance between sources of 2 km using telecom-style fiber optic cables

Riedmatten et al,
Physical Review 2005

EPR $=$ Einstein-Podolsky-Rosen

Quantum Error Correction \& Fault Tolerance

- One option for quantum communication in noisy channels
- Qubits may suffer from continuous errors (not just bit flips)
- In particular, moving closer to one basis or changing sign
- Operations may also introduce errors (limiting this = 'fault tolerance')
- Basically, expand into a larger dimensional Hilbert space
- Measurements collapse superposition w/out affecting quantum information
- Error discretization can allow a finite syndrome to perform a correction
- Threshold theorem - 'good enough' gates are effectively error free
- The basis for fault tolerance

Quantum Routing

- Basic approach: compute shortest paths, use entanglement swapping to extend links to all necessary (s, d) pairs, employ QEC and/or teleportation and purification
- Better result: multi-path routing has better rate-vs-distance scaling
- Parameters of interest: G (topology graph), p (Pr\{quantum link established in a time step\}), q (Pr\{successful Bell measurement\}), S (\# parallel links in edge), T (\# of time slots before stored decoherence)

Multi-Path Quantum Routing

Pant et al, arXiv:1708.07142v2, 9/2017

- $\mathrm{X}, \mathrm{Y}=$ locations of Alice,Bob [on a grid]
- R_g $(p, q)=$ global knowledge
- R_loc = local knowledge
- R_lin = linear cascade of repeaters
- $p=\operatorname{Pr}\{$ link establishment $\}$
- $q=\operatorname{Pr}\{s u c c e s s f u l$ measurement $\}$

Conclusions

- Incremental computation for dynamic graphs updates can be a significant win but progress has taken considerable time/effort
- Giving up strict optimality admits many more efficient options that might be very close to optimal nonetheless (compact routing)
- Mapping the topology path problem to another form (greedy embedding) may allow for even more efficient approaches
- Adaptation in a quantum world (of non-local effects) opens up some new ways of thinking and opportunities and significant challenges

Thanks

kfall@acm.org

