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Abstract—The Thorup-Zwick (TZ) compact routing grows! In addition, as the network grows, its global
scheme is the first generic stretch-3 routing scheme de-routing scalability is being stressed [2], leading several
livering a nearly optimal per-node memory upper bound. groups to explore alternatives to the present Internet
Using both direct analysis and simulation, we derive the routing system. We believe that a better understanding
stretch distribution of this routing scheme on Internet-like of the Internet's topological growth process, coupled

interdomain topologies. By investigating the TZ scheme . - .
on random graphs with power-law node degree distribu- with knowledge of the theoretical underpinnings of the

tions, P, ~ k7, we find that the average TZ stretch is routing problem on graphs, could help in evaluating these

quite low and virtually independent of ~. In particular, Proposals (or developing others). In particular, we are
for the Internet interdomain graph with v ~ 2.1, the interested in the performance of the most scalable theo-

average TZ stretch is around 1.1, with up to 70% of retical routing algorithms on realistic topology graphs.
all pairwise paths being stretch-1 (shortest possible). As  To further investigate this relationship, we focus on
the network grows, the average stretch slowly decreases.ipa performance oompact routing schemes scale-

The routing table is very small, too. It is well below o0 oranhs Compact routing schemes comprise a set of
its upper bounds, and its size is around50 records for algorithms that aim to make a good tradeoff between

10*-node networks. Furthermore, we find that both the :
average shortest path length (i.e. distancej and width of stretch versus the amount of storage required at each

the distance distribution o observed in the real Internet Vertex for routing tables. Stretch refers to the (usually
inter-AS graph have values that are very close to the worst-case) multiplicative factor increase of path length
minimums of the average stretch in thed- and o-directions. between a pair of vertices under a particular routing
This leads us to the discovery of a unique critical point scheme versus the length of the shortest existing path
of the average TZ stretch as a function ofd and 0. phetween the same pair. The most efficient stretch-3
Thg Internet dlstanpe <:i.|str|but.|or.1 is located in a close routing scheme for generic (arbitrary) graphs currently
neighborhood of this point. This is remarkable given the known is due to Thorup-Zwick [3], which we will simply

fact that the Internet interdomain topology has evolved f “the TZ sch " ltis K b imal
without any direct attention paid to properties of the refer to as “the scheme.” |tis known to be optimal, up

stretch distribution. It suggests the average stretch function 0 @ logarithmic factor, for per-node memory utilization.
may be an indirect indicator of the optimization criteria We investigate the performance of the TZ scheme on
influencing the Internet’s interdomain topology evolution. scale-free graphs because these graphs represent our best

current understanding of the Internet’s inter-AS topolog-

Index Terms—Routing, Intemnet Topology, Simulations, jca| structure. It is worth mentioning that although we
Graph Theory, Combinatorics, Statistics. base our analysis on properties of the real-world Internet,
we are not suggesting that the TZ scheme is ripe for

use within the Internet to solve its scalability problems.
. INTRODUCTION Rather, we employ the TZ scheme as a tool to analyze the

fundamental limits for average stretch and routing table

The question as to what drives the evolutionary prgizes on realistic graphs. The schemegéseric so that

cess of the Internet's topology is of interest to many can be directly applied to any graphs—to scale-free
researchers. While various models of its topologicgtaphs, in particular. Since there are no routing schemes

structure appear talescribeit reasonably well, most developed specifically for scale-free graphs, we must
neither aid in understanding/hy the Internet's graph

has e_volved ?‘S it ha_s,_nor Offer th_e “metric” which i_s several authors are currently pursuing such models, however. For
effectively being optimized by its implementers as itne of the latest examples, see [1].



turn to generic schemes to pursue our investigation. genericrouting schemes. Generic shortest path routing
One might expect that for scale-free graphs, the mia-incompressible, so if memory space is to be reduced,
jority of known generic routing schemes would be verthen the stretch must be increased.
inefficient. Indeed, many routing schemes (including the The memory space lower bound dependence on stretch
TZ scheme) incorporatecality by carefully differentiat- is not “continuous.” As shown in [7], any generic routing
ing between close and remote nodes. This approach egheme with stretch strictly less thdamd must use at
make routing more efficient (in the stretch-versus-spaleast(n logn) bits of memory on some nodes of some
trade-off sense, in particular) by keeping only approxgraphs. In other words, the lower bound for generic
mate (non-shortest path) routing information for remotechemes with stretchi< 1.4 is the same as in the incom-
nodes, while full (shortest path) routing information ipressible case of shortest path routing discussed above (if
kept for local nodes. In scale-free graphs, with veryne considers graphs with = ©(n)). Furthermore, as
low average distances and distance distribution widtlshown in [9], the lower bound for schemes with stretch
local nodes comprise huge portions of all the nodes irstrictly less than3 is nearly the same as for shortest
network, so that one might suspect that locality-sensitigaith routing—(n) bits of memory on some nodes of
approaches might break for such networks. For a gosdme graphs. The minimum stretch factor that we must
example demonstrating that this might be quite plausiblee prepared to accept in order to significantly decrease
see the Appendix, where the stretch factor is found teemory requirements below the incompressible limits is
be very high for the Kleinrock-Kamoun (KK) routingtherefore3.
scheme [4] applied to the scale-free networks. The choiceCowen introduces a simple stretch-3  routing

of the KK scheme for such analysis is partially driven bycheme with a local memory space upper bound of
the fact that many relatively recent “routing architecturdj(n?/S 10g4/3 n) in [10]. Thorup and Zwick improve

proposals [5], [6], aimed at resolving the Internet routingpon Cowen’s result and deliver a per-node space upper
scalability issues, have been based on the ideas of [found of O(n!/21og'/?n) in [3].2 We call these two

In analyzing the TZ scheme’s performance for thechemes the&€Cowenand TZ schemesrespectively. The
Internet graph, however, we find that the situation {gcal memory space upper bound provided by the TZ
quite opposite with respect to the KK schemes: the Tsgheme is nearly optimal (up to a logarithmic factor)
scheme produces extremely low average stretch valgggause, as demonstrated in [11], any generic routing
and succinct routing tables that turn out to be well belogtheme with stretch strictly less tharmust use at least
their theoretical upper bounds. Q(n'/?) bits of memory on some nodes of some graphs.
To the best of our knowledge, the TZ scheme is the
only known generic stretch-3 routing scheme delivering

The aim of compact routing schemes is to approaghnearly optimal local memory upper bound. For this
the optimal stretch-1 (shortest-path) routing but witheason, we use it as the basis for our analytic work and
significantly reduced memory requirements. It is show§imulations below.
in [7] that for anystretch-1 routing scheme, there exists a
graph of sizex and maximum node degree3 < d < n,
such that2(n log d) bits of memory are required &t(n)
nodes. Since the trivial upper bound for shortest pathUntil fairly recently, most random graph analyses
full-table routing is als@ (n log d), this result effectively have been based on classical &deni randomr-node
demonstratesncompressibilityof generic shortest pathgraphs [12], which have links between every pair of
routing. That is to say, if we must accommodate botrertices with the uniform probability. The ensemble of
graphs of arbitrary topology and with all paths beinguch graphs is called, , and their average vertex degree
stretch-1, we must be willing to have large routingg k¥ ~ np. For largen, the vertex degree probability
tables. Although there are some results, [8], showinfistribution for these graphs is the quickly-decaying
that the majority of graphs are “better,” very little carPoisson distribution with an exponentially small number
be said conclusively regarding the practical implicatiornsf high-degree nodespP, ~ Eke*’“/k!, and average
of these results with respect to real-world graphs. Thufistance isd ~ logn/logk [13]. These graphs are
in order to study compact routing on the Internet’s

graph, we must turn to th? only existing tO_OI we have 2they also show how to implement routing decisionsanstant
for analyzing compact routing performance in all casene per node.

A. Routing Background

B. Scale-free networks



uncorrelated, and their entire statistical properties can Il. COMPACT ROUTING SCHEMES
be derived from this vertex degree distribution. In this section, we briefly review the Cowen and

Almost all the networks observed in nature diﬁeﬁ'z schemes and establish the terminology and notation

drastically from thegi, , graphs. For our work, the most, o require. Both schemes are very simple. They

important difference is an inconsistency between Wvolve four separate components: the landmark set (LS)

average dlstancg and average vertex degree predlcég struction procedure, routing table construction, la-
by the Erds-Féni model for the Internet. In the realyqing and routing (message forwarding) function. The
Internet interdomain 11000-node graph,~ 5.7 and 17 gcheme differs from the Cowen scheme by improving
d = 3.6 [14], while the Gi1000,5.2x10-+ graphs have . yhe | 5 construction procedure.

d. ~ 5.3. The Q_W graphs of the same size with the Both schemes operates on any undirected connected
right average distanceé ~ 3.6 would have to have the graphG = (V, E) with positive edge weights. Let —

average degrek ~ 14. The simultaneously small valueﬁv be the graph sizej(u, v) be the distance (in hops)
of the average distance and average vertex degree injfhg, . o pair of nodea:, v €V, L be the LS,L(v)

Internet necessarily imply a larger portion of its noda&e a landmark node closest to nodes V, and C(v)
are high-degree than in a comparably-sizkg, graph. be v’s cluster defined fok'v € V' as a set of all nodes

In other words, the vertex degree distribution must t?ﬁat are closer te@ than to their closest landmarks,
fat-tailed The power-law distributionf, ~ k=7, one of

such fat-tailed distributions, is what has been observed in C(v)={ceV|dcw) <L) }. 1)
many real-world networks, with the exponentanging o o
between?2 and 3. For the Internet interdomain grapthIusters are similar to Voronoi diagrams but they can
~ ~ 2.1 [15], [14]. Intersect. If1 € L, thenL(l) = [ and C(l) = 0 by
Both theg,,, graphs and graphs with fat-tailed degre@€finition. If L is empty, then fotv € V, L(v) = 0 and
distributions are often said to possess #meall-world Clv)=V. _ ] ) _
property, [16], to emphasize that they have extremerThe TZ LS construction algorithm iteratively selects
low average distances (for networks of such size), evéfidmarks from the set of large-cluster nodesAt the
though average distancesgp , graphs are only slightly first iteration, T = V and every noo_le eTis selg_cted
higher. Networks with power-law degree distributions at€ P€ & landmark with a specific uniform probabilityn
also calledscale-freesince their node degree distributioVith ¢ = (n/log n)'/2. The expected LS size after the
lacks any characteristic scale, [17], in contrast to &St iteration isq. During subsequent iterationg; is
G, graphs with the narrow Poisson degree distributidgdefined to be a sgt_ of nodes that have clusters of size
centered around the characteristic average valuenp, 9reater than a specific threshajd= 4n/q,
The most. popular mode'l for growing scale-fre,e 'net- T={tev ‘ c)]>q}, @)
works useslinear preferential attachmenlby Baralasi
and Albert (BA), [17]. The BA model is very simple;and additional portions of landmarks are selected fiom
it does not have external parameters, and in its “pureiith a uniform probabilityg/|T"|. The iterations proceed
form, it predictsy = 3. The model can be easily modifieduntil 7" is empty.
to produce other values of, but its ability to help  Every nodev € V then calculates its outgoing port for
explain the evolutionary processes influencing the growtthe shortest path to evetye L and every € C(v). This
of the Internet has been questioned in [18], [19]. li3 the routing information that is stored locally @atAs
particular, in [18], it is noted that the BA model andne can see, the essence of the LS construction procedure
its derivatives are capable of reproducing what has beienthe right balance between the LS and cluster sizes
already measured but fail to predict correctly anythin@r, effectively, betweery and g). The cluster sizes are
new about the Internet topology growtrConstruction upper-bounded by definition (2), and the involved part
of explanatory models capturing elements of the actusfl the proof in [3] is to demonstrate that the algorithm
factors governing the Internet evolution idhat topic of terminates with a proper limit for the expected LS size,
Internet-related research these days [1]. which turns out to be2qlogn. This guarantees the

SThat | . A overall local memory upper bound 6f(n'/2log'/? n).
,natis, vertex-vertex degree correlations are absent. ~ The label of nodey (used as its destination address
A good example is the power-law decay of thlestering coeffi-

cient Models reproducing this effect were constructed only after {P _paCket headers) is then a triple of its ID, the ID
had been observed in real networks. of its closest landmark.(v), and the local ID of the



port at L(v) on the shortest path from(v) to v. With nodes. From these, we may construct another random
these labels, routing of a packet destinedvtat some variable,S*, to describe the stretch value
(intermediate) node occurs as follows: iy = u, done; X+Y

if v € LU C(u), the outgoing port can be found in S* = 7 (6)

the local routing table at; if u = L(v), the outgoing This expression for stretch is approximate for two rea-
port is in the destination label in the packet; otherwisgons. First, it does not account for stretch-1 paths to
the outgoing port for the packet is the outgoing POfestinations in the local cluster 6F. Second, it does
to L(v)—the L(v) ID is in the label and the outgoingngt incorporate thehortcut effectRecall that the Cowen
port for it can be found in the local routing table. Th‘?outing algorithm is such that if destinatiang L and
demonstrations of correctness of the algorithm and thaty message on its way td(v) passes some node
the maximum stretch is 3 are straightforward ([10], [3]), ‘ v € C(u), then the message never reacHes)

but instead goes along the shortest path froto v. To

] ) ] ] ) refine our approximation, we correct the definitionsf
In this section, we provide analytical expressions fQf form s as follows:

the TZ stretch distribution on a small-world graph with

I1l. ANALYTICAL RESULTS

a given distance distribution. 1 ff Z<Y,
To obtain our results we make a simplifying assump- S=4q1 if Z <X, (7)
tion: we consider only the first iteration of the TZ LS 22X otherwise.

construction algorithm. There are two justifications malf\]ote that the first case on the r.h.s. of (7) accounts

'?]g t?'s a_ssum_ptlon reasonable.hFlrs;Nas ShOV\lm n Dg(actly for the stretch-1 paths to the destinations in the
the first iteration guarantees that tiaerage Cluster ... cjyster (cf. definition (1)), while the second case

Siz€ 'S”/q; the subsequent iterations guarantee tiat accounts approximately for the shortcut effect as shown
cluster sizes are no larger than/q. Therefore, the error ;| [21]

introduced by this assumption for tleveragestretch — \yih the above notations, the p.m.f. for the distance

is small as we ?ie in hhe nlext secr:ion.h_Sﬁct:)ndly, W hetween a random node and itth closest landmark
are concerned with small-world graphs which have Very yqry similar to the p.d.f. foorder statistics(see, for
short average distances and narrow distance dlstrlbutlo(g5§am]F)|e [20]). One can show (cf. [21]) that

Indeed, if there are no long distances in a graph, then
even after just the first iteration, the majority of clusters py,(d) = l(q) F(d) f(d)(1 — F(d)I.  (8)
are small.

For the rest of this section, we lgtdenote the actual The p.m.f. for the average distance to all landmarks from
size of the LS ¢ = |L|) and D be the graph diameter (i.e.a randomly-selected node is
the maximum shortest path length in the graph). We also 14
denote the distance p.m.f. and c.d.f. pl) and F'(d). px(d) == py.(d). 9)
With D being the graph diameted,c {1...D}. K

Letting W and V' be random variables correspondingince landmarks are jusi random nodespx(d) is
to a source and destination notaye introduce the equivalent tof (d),
following three random variableX’, Y, and Z: q

1 (g i q—i
X (W L), ot = px (o). @ x@=fa? ;Z@F(d) a-ra@y o
Y =46(V,L(V)), p-m.f. = py, (y), 4) = f(d).
Z=5WV),  pmi=psz)=f(). (5)

Our problem now is to find the p.m.fhs(s) for the
These random variables correspond to the distances frégidom variableS. If X, Y, and Z were indepen-
some random nod& to the landmark nearest anotheflent and unconstrained then(s) would be given by
random nodéV/, the distance from that landmark ¥, Px(z)py,(y)pz(2). They are not independent, however,

and the actual shortest path between the two rand&cause they are defined in equations (3)-(5) on the same
random event. Furthermore, the form of their definition
SHere, W (w) andV (w) represent particular selections for verticegsesults in the triangle inequality,

where the samplew € V x V x V selects a source, target and
landmark vertex. X -Y|<Z<X+Y, (11)



which causes some portions of the joint p.m.f to be zenoumeric evaluations wittf(d) taken to be an explicitly

The p.m.f. is derived in [21] to be normalized Gaussian,
_ px(@)py: (9)pz(2) (2. y, 2) _1(d=a)’
pXYZ(vah Z) = F(.%' +y) — F(’(L‘ — y’) ) (12) f(d) = ce 2 ( g ) , (16)

where the denominator is positive and the “triangletherec is s.t. ZdD:l f(d) =1, andd and o are respec-

indicator function is defined as follows tively the average distance and the width (standard de-
viation) of the distance distribution. Distributiops; (z)

_ (13) andpy, (y) are also explicitly normalized. Variables,

0 otherwise. Y, and Z, defined in (3)-(5), take integer values within

the following ranges:

1 if |z—y|<z<z+y,

Ii(z,y,2) = {

Using this result, the stretch distributigry, and the

average stretch are computed as follows: z,y = 1...D, a7)
D z = max(L,|z —y|)...min(D,z +y), (18)
= X pxvzlens) @ p o (a4 o], (19)

T,y,z=1

s(@y.z)=s where [d] = round (d) and diameterD becomes a

5= ZS -ps(s) (15) distance distribution cutoff parametefi(d) < 1, ¥d >
s D since f(D)/f(d) ~ e~'%, The TZ LS sizeq (cf.
In the above expression for the stretch distribuigiis), Section 1) is roundedg = [(n/log, n)'/2].
the summation is over such values of y, and z that For the simulation part, we develop our own TZ
their transformation according to (7) yields scheme simulator and use it on graphs produced by our
Equations (14) and (15) are our final analytical resultplementation of the PLRG generator [25]. For a given
that we require for the numerical evaluations of the nepirameter set, all the data is averaged averandom
section. Of particular note is that the stretch distributiagraphs. All average graph sizesare betweerl0, 000
and average depend only gitd) andgq. and 11,000 unless mentioned otherwise.

IV. SIMULATION AND NUMERIC RESULTS A. Distance distribution
We are now ready to substitute the Internet inter-As While the PLRG generator has been found to produce

distance distribution into the analytical expressions §fPologies largely const;stent with those observed Im the
the previous section. Because the Internet is an evolvitieMet iNter-AS graph [28], it outputs uncorrelated
network, it contains vertex-vertex correlations [22], an@f@Phs, and, hence, there are some concerns regarding
so to fully achieve our immediate goal, we would nedtf capability of reproducingll the features of strongl;_/

to know an analytic result for the distance distributiof°'"¢lated nets, such as the Internet. However, since
in correlated scale-free networks. Unfortunately, thidh€ Stretch distribution is a function of the distance
problem has not yet been solvedSurprisingly, the distribution and the graph size only (Section lIlI), a_II we
deterministic scale-free graph model by DorogovtseVi€ed from a graph generator for our purposes is that
Goltsev, and Mendes (the DGM model) [24] analyticall{iStance distributions in graphs produced by it be close
produces the Gaussian distance distribution, which ' distance distributions observed in real-world graphs.
very close to the distance distribution observed in tfgfSed on the experiments performed in [28], one can
real Internet interdomain graph [22]. Given this obsefXpect that the distance distribution in PLRG-generated

vation, we choose to parameterize distance distributio‘x;’l'?p?lS V\I”th thel node digree dl_stnt;unon exponent G
in small-world graphs we consider in this section by} Should be close to the one in the Internet. We find

Gaussian distributions. Using the Gaussian distributi tﬁat it is indeed so. See Fig. 1(a) fqr details._ _
as the distance p.m.ff(d) from the previous section We then proceed as follows. Payl_ng _spe_ual attention
transforms equations (14) and (15) into expressions tfigtthe value of the node degree distribution exponent

cannot be evaluated analytically, so that we retreat 1o€dual 1021, which is observed in the Internet, we
generate a series of graphs wittranging from2 to 3,

®Although, there are some recent analytical results on distan%_@d _Cal?mate their d_is_tance diStr_ibUtionS- We fit these
distributions inuncorrelatedscale-free graphs, [23]. distributions by explicitly normalized Gaussians (16)
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Fig. 1. a) The distance distributions. The circles represent the distance distribution from a typical AS (AS #1221) averaged over a period
of approximately March-May, 2003. (The source of data is [26]; for other measurements, see [14], [27].) The mean and standard deviation
is 3.7 and 0.9 respectively. The distance distribution in PLRG-generated graphsyith2.1 is shown by squares. The standard deviation

is the same as before, the mear8i6. The solid line is the Gaussian fit of the PLRG distributidn= 3.4 and o = 0.9. b) The means

and standard deviations (squares) of distance distributions in PLRG-generated graphs=with, 2.1, ..., 3.0 (from left to right), and the
corresponding values af and o (crosses) in their Gaussian fits. The fitted valuesi @ind ¢ as functions ofy are shown in(c) and (d)
respectively. The Internet value of= 2.1 is circled in (b)-(d).

yielding values ofd and o that we use in numerical in Section V. In Fig. 1(c,d), we show fitted and o as
evaluations of our analytical results. For fitting, we ugeinctions ofv (cf. with the results in [23], [29]).

the standard non-linear least squares method. All fits areAverage graph sizes for different values of are
very good: the maximum SSE we observe in our fits #ightly different, but the dependence éfand o on n
0.003 and the minimum R-square 59905. (not shown) is negligible compared to their dependence

_ on~. This is in agreement with [23], [29].
The values off ando in fitted Gaussians are slightly

off from the means and standard deviations of distan
distributions in generated graphs as depicted in Fig. 1(
In fact, Fig. 1(b) is a parametric plot ef(d) with ~ being We obtain a very close match between the simulations
a parameter. We observe an almost linear relationslaipd analysis of the average TZ stretch and stretch
betweend and o with such parametrization. Note thatistribution. The average stretch as a functionyofs
the almost linear relationship between the distance c.&hown in Fig. 2(a). For the Internet-like graphs+= 2.1,
center and width parameterized by is analytically the average stretch we observe in simulatioris(8 and
obtained in [23] as well. We further discuss this subjetite average stretch given by (15) wiflid) in (16), with

%6.3 Stretch distribution
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Fig. 2. a) The analytical results (circles) and simulation data (squares) for the average TZ stretch as a fungtid) dhe same for

the TZ stretch distribution withy = 2.1. ¢) The analytical data for the average stretch as a function of the graph size. The dashed line
corresponds to the case when the distance distribution parandeterd o are fixed to the values observed in the Internet. The solid line
presents the data whehand o scale according to the DGM model) The simulation data for the LS (circles) and cluster (squares) sizes.

In the Internet casey = 2.1, the average graph size in simulations is 10,687, the average LS size is 50.0, and the average cluster size is
2.43.

d = 3.4 ando = 0.9, is 1.14. Thus, we find that the All the significant stretch values are bel@y

average stretch igery low The small amount of stretch values with noticeable

Furthermore, while both the average distance and digobabilities is due to the narrow width of the distance
tance distribution width in power-law graphs do dependistribution. Indeed, inv 86% cases, two random nodes
on v (cf. Fig. 1(c,d)), the average stretdoes notWe are either 3 or 4 hops away from each other. That is,
delay the discussion of this topic until Section V. the probability forX or Z to be either3 or 4 is ~ 0.86,

The stretch distributions obtained both analyticallpee Fig. 1(a). Inv 82% cases, a random node is just one
(14), and in simulations are shown in Fig. 2(b). The sefi®p away from its closest landmaiky, (1) ~ 0.82. This
of significant stretch values (that is, stretch values haviggplains why stretch/3 (X =3, Y = 1, andZ = 3)
noticeable probabilities) match between the analysis af@d stretchz/4 (X =4, Y =1, and Z = 4) paths are
simulations. The top ten stretch values correspondingf®st probable among streteh> 1 paths in Table I.

virtually 100% of paths are presented in Table . In Fig. 2(c), the analytical results for the average

We notice that a majority of paths (up to 71% stretch as a function of the graph size are shown. Note
according to the simulations) asbortest There are only that dependence om in (15) is only via the LS sizg.
a very few significant stretch values for the rest of pathé/e present data for the case whérand o are fixed



TABLE |
THE TOP TEN STRETCH VALUES AND PERCENTAGE OF PATHS
ASSOCIATED WITH THEM. Our investigation so far suggests that the average
TZ stretch depends strongly on the characteristics of
the graph distance distribution—its average distance and

V. MINIMUM STRETCH AND THE INTERNET GRAPH

| Stretch| Analysis (%) [ Simulations (%)]

4}3 ig:g Ig:f width, in particular. Recall that now we are taking the
5/4 14.8 9.71 distance distribution in a graph to be Gaussian, (16), and,
3/2 4.95 2.33 hence, the average TZ stretehin (15) is a function

5/3 2.88 0.731 of the average distancé and the width of the distance
645 02.211304 02.55140 distribution o, 5 = 5(d, o). At this point, we wish to
775 0173 6.77 x 102 explore the analytical structure 8fd, o) in more detail.

7/6 | 520 x 107 0.460 The natural starting point is to fix eithef or o

8/7 [3.01x107" [ 7.42x10"° to their observed values in the Internes,4( and 0.9

respectively), and vary the other. This results of this
exercise are illustrated in Figures 3(a,b). The left graph

at their values observed in the Internet, and the ca¥ows the stretch values whenis fixed at 0.9 and
when they are allowed to scale as in the DGM modd$ allowed to vary between 0 and 7. The right graph
In both cases, the average stretch slodbcreasesas shows the stretch values whens fixed at 3.4 and the
the network grows, although this decrease is spread o¥éflth o is allowed to vary between 0 and 7. To our
multiple orders of magnitude of and the stretch changedreat surprise, we discover that these two functions have
is confined to a narrow region betweers and1.1. We unique minimumand that the point corresponding to the
also notice that after a certain point, the stretch stoffgermnet distance distribution (the large dots, which we
decreasing. Although it becomes very small, it does né!l call the “Internet point”) arevery closeto them. In
reach its minimal value 1. other words, one may get an impression that the Internet

Finally, in Fig. 2(d), we report the simulation data OItppology has been carefully crafted to have a distance

the average cluster and LS sizes. We notice that th% tribution that Would_(nearly) minimize the average Tz
etch. Of course, this can be only an impression and

are well below their bounds. The average cluster si?

growth similar to the growth of the average distance, ot an explanation since the Internet ?VOIUt'On’ as we
Fig. 1(c), is expected. know it today, has had nothing to do with stretch.

Recall that the sum of the cluster and LS sizes in theThe next qgestl_on we have to ask is if the minimums
. . .wWe observe in Fig. 3(a,b) correspond to a true local
TZ scheme is the number of records in the local routmnqinimum of the stretch function. Our analytical results
table. We see that for the Internet-like graphs; 104, ) y

v ~ 2.1, this sUM is~ 52 gllow us to construct Fig. 3(c), where the stretch function
o ' is plotted against botld and . Note that not all com-
binations of(d, o) correspond to Gaussian-like distance
distributions. Indeed, whem > d, f(d) from (16) looks
more like an exponential decay since it is cut off from

Looking at Figs. 2(a,c), one may be tempted to assufft€ left by conditiond > 1. Also, wheno is very small,
that the average stretch just moderately depends, orfcorresponding to highly regular graphs like complete
and does not depend on eithéror o for a wide class graphs, stars, etc.), the peculiar peak formation in the
of random graphs. o ~ 0 area in the picture occurs. In this region, accurate

To demonstrate that this is incorrect, we consig&Pmputation of the stretch requires detailed knowledge

the most common class of random grapbs,,. We of the partllcular grgph topolody. )
take n ~ 10* and choosep to match approximately The region of primary interest to us, and which cor-
the Internet average distance 1.3 x 10~3) and responds to real-world networks, is whens somewhat

average node degrep & 5.7 x 10~%). The analytical greater thard and som_ewhat less theh Here, we ob-
and simulation results for the average stretch in these tifg/ V& @ concave area in a form of a channel between the
cases are presented in Table Il. We find that the averagg\lote’ however, that for the complete network cabes 1, o — 0.

stretch is _SUbStantia”y higher than in the (_:aS? of randQ/V@ obtain the correct answer for the average stretch, 2. For detailed
graphs with power-law node degree distributions. explanation of the peak structure, see [21].

C. G, graphs
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Fig. 3. a),b) The average stretch as functionsdowith o = 0.9 and ofo with d = 3.4 respectively. The Internet is represented by the dots.
c) The average stretch as a functiondfindo. The Internet is represented by the dot. The stretch minimums along thed o-axes, M5

and M,, are the light-grey and black lines respectively.The projection of (c) onto thé-o plane. The solid bottom and top lines represent
respectivelyM; and M, (the light-grey and black lines from (c)). The two dashed lines are their linear fits iM8f The crosses are the
same as in Fig. 1(b), the bottom-most dashed line being their linear fit. The Interae®.1, is circled. The shaded area id; from the
text. The plus is the point with the average distance observed in the Internet and the Gaussian width predicted by the DGM=n3odiel,

o = 1.1. The diamond and square are the distance distributions af.thegraphs from Table Il matching the Internet average distance and
node degreee) The projection of (c) onto thé-3 plane. The notations are the same as in (d). The graph sized0" everywhere.



TABLE I
THE AVERAGE TZ STRETCH ON THEG,, , GRAPHS

[ n ] p | Avg. degreek | (d, o) in graphs| (d,o) in Gaussian fits] 5 (analysis)| s (simulations)]
107 [ 1.3x107° 13 (3.9,0.6) (3.9,0.5) 1.51 1.60
107 [ 5.7x 1077 5.7 (5.5,0.9) (5.6,0.8) 1.37 1.50

other regions described above. This area, which we shalfiserve a stationafypoint of 5(d, o), which we could
term theminimal stretch regior{MSR), is characterized then test for the presence of an extremum of the stretch
by particularly low stretch values. The width and deptfunction. This does not happen, however. Insteadd as
of the MSR slowlyincreaseas (d, o) grow. For small ando become small, the linear behavior breaks near the
(d,o), the MSR has a unique critical point, which weapex due to increasingly “more discrete” structure of the
call the MSR apex The Internet point is located verydistance distribution ([21]).

close to the apex, which is characterized by the shortestn the extended version of this paper [21], we show
distance between the sets of minimums of the averagpt linearity of M/; and M, can be analytically derived
stretch functions(d, c)—along thed- and o-axes. We from the fact that the distance distribution is taken to
denote these two sets by, and M, respectively. We be Gaussian. Of course, this does not explain why the
find that)M/; and M., almost toucteach other at the apex.Internetis so close either to the MSR or to its apex.

The MSR apex can be more easily observed 'isrg):nheeIi“?]??)rnfgrgrogéygre?ar:tceié\{gshnetgfewhrfsieszsgrsa e
Fig. 3(d) showing a projection of Fig. 3(c) on tlkes 9 y y 9

plane. The solid lines represent the above two setszqemh is virtally independent of. In Fig. 3(d), the

minimums forming the MSR, and the Internet point isvafIecj art?at rre\piresentf jir:ett(?fot% for r\g’h'Ch t]t]er th
very near their closest segment. average stretch 15 approximalely the same as for the

Internet, M; = { (d,0) | 5(d,0) ~ 5(3.4,0.9) }.

An opportunity to look at the apex from yet anothewe see that in the MSR, th&/; boundaries are almost
angle is presented in Fig. 3(e) showing a projection phrallel straight lines. Therefore, if the average stretch is
Fig. 3(c) on thed-s plane. We see that starting fromto be independent of, which is observed in Section V-
the apex, asl increases, the minimum stretch valueB, then the points representing distance distributions
along thed- and o-directions become virtually equalin power-law graphs(d,,o,) from Fig. 1(b), should
and slowlydecreaseasd grows. We also note thak,, lie along the M; boundaries, and this is what indeed
graphs are far away from the apex and that they havappens. Yet again, the linear relation betwéeando.,
average stretch values that are far from minimal. in the power-law graphs, and the fact that this relation is

We can see now that the apex is indeed a critic!glzt as r((ajqu;redffor the av;e ragetTZ stretch b?'n%.\”.rtg?”y
or “phase transition” point since it is located at th10€ependent oy, come irom two seemingly disjoin

boundary of the two regions of the average stret Pa:c_nsf'h the list of vari “coincid ”
function. The first region, the MSR, is characterized b 0 finis € list of varlous “coincidences,” we con-

lowest possible stretch values corresponding to dista Ezu?t alinearfit of ¢, o) (the _bottom—mos_t dashed !me
i_nj Fig. 3(d)). The Internet pointy = 2.1, lies on this

distributions observed in real-world graphs. The seco ) )
ne. Our numeric analysis shows that the Internet value

region, with substantially higher average stretch valu N . .
g y g ¢ T,’y = 2.1 minimizes the distance between the linear

corresponds to distance distributions in more re ulg - L . .
graphsp g it of (d,,o) and (d",0*), which is the intersection

of the linear fits of M and M,. In other words, the
To illustrate this point in more detail, we turn oulnternet distance distribution is the point thatci®sest

attention back to Fig. 3(d). We observe that the two satsthe MSR apex, compared to distance distributions in

of minimums, M7 and M, are linear wherr > 1. The all other scale-free graphs with power-law node degree

dashed lines represent the linear fits\éf and M., in the  distributions.

area witho > 1. The exact location of the intersection

of these fits Is(gk a*) _ (3 16.0 97) If the linear form Recall that a function has a stationary point where all its first-
f d ’ ined f T I th order partial derivatives are zero. Thus, we can call the appaai-

0 ME and M, ?‘USta'ne OH < 1 as well, t enME stationarypoint emphasizing tha@s/dd and9s/dc are bothnearly

and M, would intersect at(d",o*), where we would zero at the apex.
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APPENDIX N D n n(nw —1)
S~ — — T
In this appendix, we calculate a rough estimate of 2d n—1 (n—1)(nm —1)2
the stretch factor of the Kleinrock-Kamoun (KK) hi- 9 ne (21)

erarchical routing scheme, [4], applied to the observed — T |

Internet interdomain topology. We find that the stretch is m (1)

very high, which is consistent with the observation madgsing the numerical values fot, d, D, and optimal

in [4] that the approach used there works reasonably = 10, we can see that the KK stretch factor on the
well only for sparsely connected networks. The scalgternet interdomain topology is

free networks, on the contrary, are extremely densely

connected. s ~ 15. (22)

Recall that [4] assumes the existence of a hierarchiggbte that a 15-times path length increase in the Internet
partitioning of a network of sizen into m levels of \yould lead to AS path lengths of 55 and IP hop path
clusters. Eaclk-level cluster consists af!/™ (k — 1)- lengths of~ 150.
level clustersf = 1...m, 0-level clusters being nodes. The stretch factor is a nearly linear function of the
The optimal clustering is achieved when ~ logn. number of hierarchical levels:, which follows directly

There are a few other fairly strong assumptions aboggm (21) since, for larges, (21) can be rewritten as
the properties of the required partitioning. Neither an

algorithm for its construction nor proof of its existence s~ 1+ g(m —1). (23)
are delivered, but if it does exist then the stretch factor B 2d
is shown to be Using D ~ logn, d ~ loglogn ([29]), and optimaln ~

logn, we obtain the following estimate of the stretch
] dy, (20) factor as a function of the network size:

1S nw—1
S +dZ[ 1
k=1 log®n

whered is the network average distance adgis the 5 loglogn’
diameter of ak-level cluster.

It is further assumed in [4] that both the network
diameter and average distance are power-law functions of
the network size. This is certainly not true for scale-free
networks with power-lawnode degrealistributions. For
recent results on the average distance in such networks,
see [29], [23]. In the numerical evaluations in this
appendix, we use the value df~ 3.6 observed in the
Internet, [26].

As shown in [29], thediameter of networks with
power-law node degree distribution with exponent
lying betweer2 and3 scales almost surely &3(logn).

For the Internetyy ~ 2.1, and since the Internet size~

(24)



