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Abstract— The Thorup-Zwick (TZ) compact routing
scheme is the first generic stretch-3 routing scheme de-
livering a nearly optimal per-node memory upper bound.
Using both direct analysis and simulation, we derive the
stretch distribution of this routing scheme on Internet-like
interdomain topologies. By investigating the TZ scheme
on random graphs with power-law node degree distribu-
tions, Pk ' k−γ , we find that the average TZ stretch is
quite low and virtually independent of γ. In particular,
for the Internet interdomain graph with γ ' 2.1, the
average TZ stretch is around 1.1, with up to 70% of
all pairwise paths being stretch-1 (shortest possible). As
the network grows, the average stretch slowly decreases.
The routing table is very small, too. It is well below
its upper bounds, and its size is around50 records for
104-node networks. Furthermore, we find that both the
average shortest path length (i.e. distance)d and width of
the distance distribution σ observed in the real Internet
inter-AS graph have values that are very close to the
minimums of the average stretch in thed- and σ-directions.
This leads us to the discovery of a unique critical point
of the average TZ stretch as a function of d and σ.
The Internet distance distribution is located in a close
neighborhood of this point. This is remarkable given the
fact that the Internet interdomain topology has evolved
without any direct attention paid to properties of the
stretch distribution. It suggests the average stretch function
may be an indirect indicator of the optimization criteria
influencing the Internet’s interdomain topology evolution.

Index Terms— Routing, Internet Topology, Simulations,
Graph Theory, Combinatorics, Statistics.

I. I NTRODUCTION

The question as to what drives the evolutionary pro-
cess of the Internet’s topology is of interest to many
researchers. While various models of its topological
structure appear todescribe it reasonably well, most
neither aid in understandingwhy the Internet’s graph
has evolved as it has, nor offer the “metric” which is
effectively being optimized by its implementers as it

grows.1 In addition, as the network grows, its global
routing scalability is being stressed [2], leading several
groups to explore alternatives to the present Internet
routing system. We believe that a better understanding
of the Internet’s topological growth process, coupled
with knowledge of the theoretical underpinnings of the
routing problem on graphs, could help in evaluating these
proposals (or developing others). In particular, we are
interested in the performance of the most scalable theo-
retical routing algorithms on realistic topology graphs.

To further investigate this relationship, we focus on
the performance ofcompact routing schemeson scale-
free graphs. Compact routing schemes comprise a set of
algorithms that aim to make a good tradeoff between
stretch versus the amount of storage required at each
vertex for routing tables. Stretch refers to the (usually
worst-case) multiplicative factor increase of path length
between a pair of vertices under a particular routing
scheme versus the length of the shortest existing path
between the same pair. The most efficient stretch-3
routing scheme for generic (arbitrary) graphs currently
known is due to Thorup-Zwick [3], which we will simply
refer to as “the TZ scheme.” It is known to be optimal, up
to a logarithmic factor, for per-node memory utilization.

We investigate the performance of the TZ scheme on
scale-free graphs because these graphs represent our best
current understanding of the Internet’s inter-AS topolog-
ical structure. It is worth mentioning that although we
base our analysis on properties of the real-world Internet,
we are not suggesting that the TZ scheme is ripe for
use within the Internet to solve its scalability problems.
Rather, we employ the TZ scheme as a tool to analyze the
fundamental limits for average stretch and routing table
sizes on realistic graphs. The scheme isgeneric, so that
it can be directly applied to any graphs—to scale-free
graphs, in particular. Since there are no routing schemes
developed specifically for scale-free graphs, we must

1Several authors are currently pursuing such models, however. For
one of the latest examples, see [1].



turn to generic schemes to pursue our investigation.
One might expect that for scale-free graphs, the ma-

jority of known generic routing schemes would be very
inefficient. Indeed, many routing schemes (including the
TZ scheme) incorporatelocality by carefully differentiat-
ing between close and remote nodes. This approach can
make routing more efficient (in the stretch-versus-space
trade-off sense, in particular) by keeping only approxi-
mate (non-shortest path) routing information for remote
nodes, while full (shortest path) routing information is
kept for local nodes. In scale-free graphs, with very
low average distances and distance distribution widths,
local nodes comprise huge portions of all the nodes in a
network, so that one might suspect that locality-sensitive
approaches might break for such networks. For a good
example demonstrating that this might be quite plausible,
see the Appendix, where the stretch factor is found to
be very high for the Kleinrock-Kamoun (KK) routing
scheme [4] applied to the scale-free networks. The choice
of the KK scheme for such analysis is partially driven by
the fact that many relatively recent “routing architecture”
proposals [5], [6], aimed at resolving the Internet routing
scalability issues, have been based on the ideas of [4].

In analyzing the TZ scheme’s performance for the
Internet graph, however, we find that the situation is
quite opposite with respect to the KK schemes: the TZ
scheme produces extremely low average stretch values
and succinct routing tables that turn out to be well below
their theoretical upper bounds.

A. Routing Background

The aim of compact routing schemes is to approach
the optimal stretch-1 (shortest-path) routing but with
significantly reduced memory requirements. It is shown
in [7] that foranystretch-1 routing scheme, there exists a
graph of sizen and maximum node degreed, 3 6 d < n,
such thatΩ(n log d) bits of memory are required atΘ(n)
nodes. Since the trivial upper bound for shortest path
full-table routing is alsoO(n log d), this result effectively
demonstratesincompressibilityof generic shortest path
routing. That is to say, if we must accommodate both
graphs of arbitrary topology and with all paths being
stretch-1, we must be willing to have large routing
tables. Although there are some results, [8], showing
that the majority of graphs are “better,” very little can
be said conclusively regarding the practical implications
of these results with respect to real-world graphs. Thus,
in order to study compact routing on the Internet’s
graph, we must turn to the only existing tool we have
for analyzing compact routing performance in all cases:

generic routing schemes. Generic shortest path routing
is incompressible, so if memory space is to be reduced,
then the stretch must be increased.

The memory space lower bound dependence on stretch
is not “continuous.” As shown in [7], any generic routing
scheme with stretch strictly less than1.4 must use at
leastΩ(n log n) bits of memory on some nodes of some
graphs. In other words, the lower bound for generic
schemes with stretchs < 1.4 is the same as in the incom-
pressible case of shortest path routing discussed above (if
one considers graphs withd = Θ(n)). Furthermore, as
shown in [9], the lower bound for schemes with stretch
strictly less than3 is nearly the same as for shortest
path routing—Ω(n) bits of memory on some nodes of
some graphs. The minimum stretch factor that we must
be prepared to accept in order to significantly decrease
memory requirements below the incompressible limits is
therefore3.

Cowen introduces a simple stretch-3 routing
scheme with a local memory space upper bound of
O(n2/3 log4/3 n) in [10]. Thorup and Zwick improve
upon Cowen’s result and deliver a per-node space upper
bound of O(n1/2 log1/2 n) in [3].2 We call these two
schemes theCowenand TZ schemes, respectively. The
local memory space upper bound provided by the TZ
scheme is nearly optimal (up to a logarithmic factor)
because, as demonstrated in [11], any generic routing
scheme with stretch strictly less than5 must use at least
Ω(n1/2) bits of memory on some nodes of some graphs.
To the best of our knowledge, the TZ scheme is the
only known generic stretch-3 routing scheme delivering
a nearly optimal local memory upper bound. For this
reason, we use it as the basis for our analytic work and
simulations below.

B. Scale-free networks

Until fairly recently, most random graph analyses
have been based on classical Erdős-Ŕeni randomn-node
graphs [12], which have links between every pair of
vertices with the uniform probabilityp. The ensemble of
such graphs is calledGn,p and their average vertex degree
is k ' np. For largen, the vertex degree probability
distribution for these graphs is the quickly-decaying
Poisson distribution with an exponentially small number
of high-degree nodes,Pk ' k

ke−k/k!, and average
distance isd ' log n/ log k [13]. These graphs are

2They also show how to implement routing decisions atconstant
time per node.



uncorrelated3, and their entire statistical properties can
be derived from this vertex degree distribution.

Almost all the networks observed in nature differ
drastically from theGn,p graphs. For our work, the most
important difference is an inconsistency between the
average distance and average vertex degree predicted
by the Erd̋os-Ŕeni model for the Internet. In the real
Internet interdomain 11000-node graph,k ' 5.7 and
d ' 3.6 [14], while the G11000,5.2×10−4 graphs have
d ' 5.3. The Gn,p graphs of the same size with the
right average distanced ' 3.6 would have to have the
average degreek ' 14. The simultaneously small values
of the average distance and average vertex degree in the
Internet necessarily imply a larger portion of its nodes
are high-degree than in a comparably-sizedGn,p graph.
In other words, the vertex degree distribution must be
fat-tailed. The power-law distribution,Pk ' k−γ , one of
such fat-tailed distributions, is what has been observed in
many real-world networks, with the exponentγ ranging
between2 and 3. For the Internet interdomain graph,
γ ' 2.1 [15], [14].

Both theGn,p graphs and graphs with fat-tailed degree
distributions are often said to possess thesmall-world
property, [16], to emphasize that they have extremely
low average distances (for networks of such size), even
though average distances inGn,p graphs are only slightly
higher. Networks with power-law degree distributions are
also calledscale-freesince their node degree distribution
lacks any characteristic scale, [17], in contrast to the
Gn,p graphs with the narrow Poisson degree distribution
centered around the characteristic average valuek ' np.

The most popular model for growing scale-free net-
works useslinear preferential attachmentby Barab́asi
and Albert (BA), [17]. The BA model is very simple;
it does not have external parameters, and in its “pure”
form, it predictsγ = 3. The model can be easily modified
to produce other values ofγ, but its ability to help
explain the evolutionary processes influencing the growth
of the Internet has been questioned in [18], [19]. In
particular, in [18], it is noted that the BA model and
its derivatives are capable of reproducing what has been
already measured but fail to predict correctly anything
new about the Internet topology growth.4 Construction
of explanatory models capturing elements of the actual
factors governing the Internet evolution is ahot topic of
Internet-related research these days [1].

3That is, vertex-vertex degree correlations are absent.
4A good example is the power-law decay of theclustering coeffi-

cient. Models reproducing this effect were constructed only after it
had been observed in real networks.

II. COMPACT ROUTING SCHEMES

In this section, we briefly review the Cowen and
TZ schemes and establish the terminology and notation
we will require. Both schemes are very simple. They
involve four separate components: the landmark set (LS)
construction procedure, routing table construction, la-
belling, and routing (message forwarding) function. The
TZ scheme differs from the Cowen scheme by improving
only the LS construction procedure.

Both schemes operates on any undirected connected
graphG = (V, E) with positive edge weights. Letn =
|V | be the graph size,δ(u, v) be the distance (in hops)
between a pair of nodesu, v ∈ V , L be the LS,L(v)
be a landmark node closest to nodev ∈ V , and C(v)
be v’s cluster defined for∀v ∈ V as a set of all nodesc
that are closer tov than to their closest landmarks,

C(v) =
{

c ∈ V
∣∣ δ(c, v) < δ(c, L(c))

}
. (1)

Clusters are similar to Voronoi diagrams but they can
intersect. If l ∈ L, then L(l) = l and C(l) = ∅ by
definition. If L is empty, then for∀v ∈ V , L(v) = ∅ and
C(v) = V .

The TZ LS construction algorithm iteratively selects
landmarks from the set of large-cluster nodesT . At the
first iteration,T = V and every nodet ∈ T is selected
to be a landmark with a specific uniform probabilityq/n
with q = (n/ log n)1/2. The expected LS size after the
first iteration is q. During subsequent iterations,T is
redefined to be a set of nodes that have clusters of size
greater than a specific thresholdq̃ = 4n/q,

T =
{

t ∈ V
∣∣ |C(t)| > q̃

}
, (2)

and additional portions of landmarks are selected fromT
with a uniform probabilityq/|T |. The iterations proceed
until T is empty.

Every nodev ∈ V then calculates its outgoing port for
the shortest path to everyl ∈ L and everyc ∈ C(v). This
is the routing information that is stored locally atv. As
one can see, the essence of the LS construction procedure
is the right balance between the LS and cluster sizes
(or, effectively, betweenq and q̃). The cluster sizes are
upper-bounded by definition (2), and the involved part
of the proof in [3] is to demonstrate that the algorithm
terminates with a proper limit for the expected LS size,
which turns out to be2q log n. This guarantees the
overall local memory upper bound ofO(n1/2 log1/2 n).

The label of nodev (used as its destination address
in packet headers) is then a triple of its ID, the ID
of its closest landmarkL(v), and the local ID of the



port atL(v) on the shortest path fromL(v) to v. With
these labels, routing of a packet destined tov at some
(intermediate) nodeu occurs as follows: ifv = u, done;
if v ∈ L ∪ C(u), the outgoing port can be found in
the local routing table atu; if u = L(v), the outgoing
port is in the destination label in the packet; otherwise,
the outgoing port for the packet is the outgoing port
to L(v)—the L(v) ID is in the label and the outgoing
port for it can be found in the local routing table. The
demonstrations of correctness of the algorithm and that
the maximum stretch is 3 are straightforward ([10], [3]).

III. A NALYTICAL RESULTS

In this section, we provide analytical expressions for
the TZ stretch distribution on a small-world graph with
a given distance distribution.

To obtain our results we make a simplifying assump-
tion: we consider only the first iteration of the TZ LS
construction algorithm. There are two justifications mak-
ing this assumption reasonable. First, as shown in [11],
the first iteration guarantees that theaverage cluster
size isn/q; the subsequent iterations guarantee thatall
cluster sizes are no larger than4n/q. Therefore, the error
introduced by this assumption for theaveragestretch
is small as we see in the next section. Secondly, we
are concerned with small-world graphs which have very
short average distances and narrow distance distributions.
Indeed, if there are no long distances in a graph, then
even after just the first iteration, the majority of clusters
are small.

For the rest of this section, we letq denote the actual
size of the LS (q = |L|) andD be the graph diameter (i.e.
the maximum shortest path length in the graph). We also
denote the distance p.m.f. and c.d.f. byf(d) andF (d).
With D being the graph diameter,d ∈ {1 . . . D}.

Letting W andV be random variables corresponding
to a source and destination node,5 we introduce the
following three random variablesX, Y , andZ:

X = δ(W,L(V )), p.m.f. ≡ pX(x), (3)

Y = δ(V, L(V )), p.m.f. ≡ pY1(y), (4)

Z = δ(W,V ), p.m.f. ≡ pZ(z) = f(z). (5)

These random variables correspond to the distances from
some random nodeW to the landmark nearest another
random nodeV , the distance from that landmark toV ,
and the actual shortest path between the two random

5Here,W (ω) andV (ω) represent particular selections for vertices
where the sampleω ∈ V × V × V selects a source, target and
landmark vertex.

nodes. From these, we may construct another random
variable,S∗, to describe the stretch value

S∗ =
X + Y

Z
. (6)

This expression for stretch is approximate for two rea-
sons. First, it does not account for stretch-1 paths to
destinations in the local cluster ofW . Second, it does
not incorporate theshortcut effect. Recall that the Cowen
routing algorithm is such that if destinationv 6∈ L and
if a message on its way toL(v) passes some node
u

∣∣ v ∈ C(u), then the message never reachesL(v)
but instead goes along the shortest path fromu to v. To
refine our approximation, we correct the definition ofS∗

to form S as follows:

S =





1 if Z < Y ,

1 if Z < X,
X+Y

Z otherwise.

(7)

Note that the first case on the r.h.s. of (7) accounts
exactly for the stretch-1 paths to the destinations in the
local cluster (cf. definition (1)), while the second case
accounts approximately for the shortcut effect as shown
in [21].

With the above notations, the p.m.f. for the distance
Yi between a random node and itsi’th closest landmark
is very similar to the p.d.f. fororder statistics(see, for
example, [20]). One can show (cf. [21]) that

pYi
(d) = i

(
q

i

)
F (d)i−1f(d)(1− F (d))q−i. (8)

The p.m.f. for the average distance to all landmarks from
a randomly-selected node is

pX(d) =
1
q

q∑

i=1

pYi
(d). (9)

Since landmarks are justq random nodes,pX(d) is
equivalent tof(d),

pX(d) = f(d)
1
q

q∑

i=1

i

(
q

i

)
F (d)i−1(1− F (d))q−i

= f(d).

(10)

Our problem now is to find the p.m.f.pS(s) for the
random variableS. If X, Y , and Z were indepen-
dent and unconstrained thenpS(s) would be given by
pX(x)pY1(y)pZ(z). They are not independent, however,
because they are defined in equations (3)-(5) on the same
random event. Furthermore, the form of their definition
results in the triangle inequality,

|X − Y | 6 Z 6 X + Y, (11)



which causes some portions of the joint p.m.f to be zero.
The p.m.f. is derived in [21] to be

pXY Z(x, y, z) =
pX(x)pY1(y)pZ(z)It(x, y, z)

F (x + y)− F (|x− y|) , (12)

where the denominator is positive and the “triangle”
indicator function is defined as follows

It(x, y, z) =

{
1 if |x− y| 6 z 6 x + y,

0 otherwise.
(13)

Using this result, the stretch distributionpS and the
average stretchs are computed as follows:

pS(s) =
D∑

x,y,z=1
s(x,y,z)=s

pXY Z(x, y, z) (14)

s =
∑

s

s · pS(s) (15)

In the above expression for the stretch distributionpS(s),
the summation is over such values ofx, y, and z that
their transformation according to (7) yieldss.

Equations (14) and (15) are our final analytical results
that we require for the numerical evaluations of the next
section. Of particular note is that the stretch distribution
and average depend only onf(d) andq.

IV. SIMULATION AND NUMERIC RESULTS

We are now ready to substitute the Internet inter-AS
distance distribution into the analytical expressions of
the previous section. Because the Internet is an evolving
network, it contains vertex-vertex correlations [22], and
so to fully achieve our immediate goal, we would need
to know an analytic result for the distance distribution
in correlated scale-free networks. Unfortunately, this
problem has not yet been solved.6 Surprisingly, the
deterministic scale-free graph model by Dorogovtsev,
Goltsev, and Mendes (the DGM model) [24] analytically
produces the Gaussian distance distribution, which is
very close to the distance distribution observed in the
real Internet interdomain graph [22]. Given this obser-
vation, we choose to parameterize distance distributions
in small-world graphs we consider in this section by
Gaussian distributions. Using the Gaussian distribution
as the distance p.m.f.f(d) from the previous section
transforms equations (14) and (15) into expressions that
cannot be evaluated analytically, so that we retreat to

6Although, there are some recent analytical results on distance
distributions inuncorrelatedscale-free graphs, [23].

numeric evaluations withf(d) taken to be an explicitly
normalized Gaussian,

f(d) = c e
−1

2

(
d−d
σ

)2

, (16)

wherec is s.t.
∑D

d=1 f(d) = 1, andd andσ are respec-
tively the average distance and the width (standard de-
viation) of the distance distribution. DistributionspX(x)
andpY1(y) are also explicitly normalized. VariablesX,
Y , andZ, defined in (3)-(5), take integer values within
the following ranges:

x, y = 1 . . . D, (17)

z = max (1, |x− y|) . . .min (D,x + y) , (18)

D =
[
d

]
+

⌈
10σ

√
2
⌉

, (19)

where
[
d

] ≡ round
(
d
)

and diameterD becomes a
distance distribution cutoff parameter,f(d) ¿ 1, ∀d >
D since f(D)/f(d) ' e−100. The TZ LS sizeq (cf.
Section II) is rounded,q =

[
(n/ log2 n)1/2

]
.

For the simulation part, we develop our own TZ
scheme simulator and use it on graphs produced by our
implementation of the PLRG generator [25]. For a given
parameter set, all the data is averaged over10 random
graphs. All average graph sizesn are between10, 000
and11, 000 unless mentioned otherwise.

A. Distance distribution

While the PLRG generator has been found to produce
topologies largely consistent with those observed in the
Internet inter-AS graph [28], it outputs uncorrelated
graphs, and, hence, there are some concerns regarding
its capability of reproducingall the features of strongly
correlated nets, such as the Internet. However, since
the stretch distribution is a function of the distance
distribution and the graph size only (Section III), all we
need from a graph generator for our purposes is that
distance distributions in graphs produced by it be close
to distance distributions observed in real-world graphs.
Based on the experiments performed in [28], one can
expect that the distance distribution in PLRG-generated
graphs with the node degree distribution exponentγ =
2.1 should be close to the one in the Internet. We find
that it is indeed so. See Fig. 1(a) for details.

We then proceed as follows. Paying special attention
to the value of the node degree distribution exponent
γ equal to2.1, which is observed in the Internet, we
generate a series of graphs withγ ranging from2 to 3,
and calculate their distance distributions. We fit these
distributions by explicitly normalized Gaussians (16)
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Fig. 1. a) The distance distributions. The circles represent the distance distribution from a typical AS (AS #1221) averaged over a period
of approximately March-May, 2003. (The source of data is [26]; for other measurements, see [14], [27].) The mean and standard deviation
is 3.7 and0.9 respectively. The distance distribution in PLRG-generated graphs withγ = 2.1 is shown by squares. The standard deviation
is the same as before, the mean is3.6. The solid line is the Gaussian fit of the PLRG distribution,d = 3.4 and σ = 0.9. b) The means
and standard deviations (squares) of distance distributions in PLRG-generated graphs withγ = 2.0, 2.1, . . . , 3.0 (from left to right), and the
corresponding values ofd and σ (crosses) in their Gaussian fits. The fitted values ofd and σ as functions ofγ are shown in(c) and (d)
respectively. The Internet value ofγ = 2.1 is circled in (b)-(d).

yielding values ofd and σ that we use in numerical
evaluations of our analytical results. For fitting, we use
the standard non-linear least squares method. All fits are
very good: the maximum SSE we observe in our fits is
0.003 and the minimum R-square is0.9905.

The values ofd andσ in fitted Gaussians are slightly
off from the means and standard deviations of distance
distributions in generated graphs as depicted in Fig. 1(b).
In fact, Fig. 1(b) is a parametric plot ofσ(d) with γ being
a parameter. We observe an almost linear relationship
betweend and σ with such parametrization. Note that
the almost linear relationship between the distance c.d.f.
center and width parameterized byγ is analytically
obtained in [23] as well. We further discuss this subject

in Section V. In Fig. 1(c,d), we show fittedd andσ as
functions ofγ (cf. with the results in [23], [29]).

Average graph sizes for different values ofγ are
slightly different, but the dependence ofd and σ on n
(not shown) is negligible compared to their dependence
on γ. This is in agreement with [23], [29].

B. Stretch distribution

We obtain a very close match between the simulations
and analysis of the average TZ stretch and stretch
distribution. The average stretch as a function ofγ is
shown in Fig. 2(a). For the Internet-like graphs,γ = 2.1,
the average stretch we observe in simulations is1.09 and
the average stretch given by (15) withf(d) in (16), with
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Fig. 2. a) The analytical results (circles) and simulation data (squares) for the average TZ stretch as a function ofγ. b) The same for
the TZ stretch distribution withγ = 2.1. c) The analytical data for the average stretch as a function of the graph size. The dashed line
corresponds to the case when the distance distribution parametersd and σ are fixed to the values observed in the Internet. The solid line
presents the data whend andσ scale according to the DGM model.d) The simulation data for the LS (circles) and cluster (squares) sizes.
In the Internet case,γ = 2.1, the average graph size in simulations is 10,687, the average LS size is 50.0, and the average cluster size is
2.43.

d = 3.4 and σ = 0.9, is 1.14. Thus, we find that the
average stretch isvery low.

Furthermore, while both the average distance and dis-
tance distribution width in power-law graphs do depend
on γ (cf. Fig. 1(c,d)), the average stretchdoes not. We
delay the discussion of this topic until Section V.

The stretch distributions obtained both analytically,
(14), and in simulations are shown in Fig. 2(b). The sets
of significant stretch values (that is, stretch values having
noticeable probabilities) match between the analysis and
simulations. The top ten stretch values corresponding to
virtually 100% of paths are presented in Table I.

We notice that a majority of paths (up to∼ 71%
according to the simulations) areshortest. There are only
a very few significant stretch values for the rest of paths.

All the significant stretch values are below2.

The small amount of stretch values with noticeable
probabilities is due to the narrow width of the distance
distribution. Indeed, in∼ 86% cases, two random nodes
are either 3 or 4 hops away from each other. That is,
the probability forX or Z to be either3 or 4 is ∼ 0.86,
see Fig. 1(a). In∼ 82% cases, a random node is just one
hop away from its closest landmark,pY1(1) ∼ 0.82. This
explains why stretch-4/3 (X = 3, Y = 1, andZ = 3)
and stretch-5/4 (X = 4, Y = 1, andZ = 4) paths are
most probable among stretchs > 1 paths in Table I.

In Fig. 2(c), the analytical results for the average
stretch as a function of the graph size are shown. Note
that dependence onn in (15) is only via the LS sizeq.
We present data for the case whend and σ are fixed



TABLE I

THE TOP TEN STRETCH VALUES AND PERCENTAGE OF PATHS

ASSOCIATED WITH THEM.

Stretch Analysis (%) Simulations (%)

1 58.7 70.8
4/3 16.0 13.1
5/4 14.8 9.71
3/2 4.95 2.33
5/3 2.88 0.731
6/5 2.10 2.54
2 0.434 0.210

7/5 0.173 6.77× 10−2

7/6 5.20× 10−2 0.460

8/7 3.01× 10−4 7.42× 10−2

at their values observed in the Internet, and the case
when they are allowed to scale as in the DGM model.
In both cases, the average stretch slowlydecreasesas
the network grows, although this decrease is spread over
multiple orders of magnitude ofn and the stretch change
is confined to a narrow region between1.3 and1.1. We
also notice that after a certain point, the stretch stops
decreasing. Although it becomes very small, it does not
reach its minimal value 1.

Finally, in Fig. 2(d), we report the simulation data on
the average cluster and LS sizes. We notice that they
are well below their bounds. The average cluster size
growth similar to the growth of the average distance, cf.
Fig. 1(c), is expected.

Recall that the sum of the cluster and LS sizes in the
TZ scheme is the number of records in the local routing
table. We see that for the Internet-like graphs,n ∼ 104,
γ ∼ 2.1, this sum is∼ 52.

C. Gn,p graphs

Looking at Figs. 2(a,c), one may be tempted to assume
that the average stretch just moderately depends onn
and does not depend on eitherd or σ for a wide class
of random graphs.

To demonstrate that this is incorrect, we consider
the most common class of random graphs,Gn,p. We
take n ∼ 104 and choosep to match approximately
the Internet average distance (p ∼ 1.3 × 10−3) and
average node degree (p ∼ 5.7 × 10−4). The analytical
and simulation results for the average stretch in these two
cases are presented in Table II. We find that the average
stretch is substantially higher than in the case of random
graphs with power-law node degree distributions.

V. M INIMUM STRETCH AND THE INTERNET GRAPH

Our investigation so far suggests that the average
TZ stretch depends strongly on the characteristics of
the graph distance distribution—its average distance and
width, in particular. Recall that now we are taking the
distance distribution in a graph to be Gaussian, (16), and,
hence, the average TZ stretchs in (15) is a function
of the average distanced and the width of the distance
distribution σ, s ≡ s(d, σ). At this point, we wish to
explore the analytical structure ofs(d, σ) in more detail.

The natural starting point is to fix eitherd or σ
to their observed values in the Internet, (3.4 and 0.9
respectively), and vary the other. This results of this
exercise are illustrated in Figures 3(a,b). The left graph
shows the stretch values whenσ is fixed at 0.9 andd
is allowed to vary between 0 and 7. The right graph
shows the stretch values whend is fixed at 3.4 and the
width σ is allowed to vary between 0 and 7. To our
great surprise, we discover that these two functions have
unique minimumsand that the point corresponding to the
Internet distance distribution (the large dots, which we
will call the “Internet point”) arevery closeto them. In
other words, one may get an impression that the Internet
topology has been carefully crafted to have a distance
distribution that would (nearly) minimize the average TZ
stretch. Of course, this can be only an impression and
not an explanation since the Internet evolution, as we
know it today, has had nothing to do with stretch.

The next question we have to ask is if the minimums
we observe in Fig. 3(a,b) correspond to a true local
minimum of the stretch function. Our analytical results
allow us to construct Fig. 3(c), where the stretch function
is plotted against bothd and σ. Note that not all com-
binations of(d, σ) correspond to Gaussian-like distance
distributions. Indeed, whenσ > d, f(d) from (16) looks
more like an exponential decay since it is cut off from
the left by conditiond > 1. Also, whenσ is very small,
(corresponding to highly regular graphs like complete
graphs, stars, etc.), the peculiar peak formation in the
σ ∼ 0 area in the picture occurs. In this region, accurate
computation of the stretch requires detailed knowledge
of the particular graph topology.7

The region of primary interest to us, and which cor-
responds to real-world networks, is whenσ is somewhat
greater than0 and somewhat less thend. Here, we ob-
serve a concave area in a form of a channel between the

7Note, however, that for the complete network case,d = 1, σ = 0,
we obtain the correct answer for the average stretch, 2. For detailed
explanation of the peak structure, see [21].
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Fig. 3. a),b) The average stretch as functions ofd with σ = 0.9 and ofσ with d = 3.4 respectively. The Internet is represented by the dots.
c) The average stretch as a function ofd andσ. The Internet is represented by the dot. The stretch minimums along thed- andσ-axes,Md

andMσ, are the light-grey and black lines respectively.d) The projection of (c) onto thed-σ plane. The solid bottom and top lines represent
respectivelyMd andMσ (the light-grey and black lines from (c)). The two dashed lines are their linear fits in theMSR. The crosses are the
same as in Fig. 1(b), the bottom-most dashed line being their linear fit. The Internet,γ = 2.1, is circled. The shaded area isMI from the
text. The plus is the point with the average distance observed in the Internet and the Gaussian width predicted by the DGM model,d = 3.4,
σ = 1.1. The diamond and square are the distance distributions of theGn,p graphs from Table II matching the Internet average distance and
node degree.e) The projection of (c) onto thed-s plane. The notations are the same as in (d). The graph sizesn ∼ 104 everywhere.



TABLE II

THE AVERAGE TZ STRETCH ON THEGn,p GRAPHS.

n p Avg. degreek (d, σ) in graphs (d, σ) in Gaussian fits s (analysis) s (simulations)

104 1.3× 10−3 13 (3.9, 0.6) (3.9, 0.5) 1.51 1.60
104 5.7× 10−4 5.7 (5.5, 0.9) (5.6, 0.8) 1.37 1.50

other regions described above. This area, which we shall
term theminimal stretch region(MSR), is characterized
by particularly low stretch values. The width and depth
of the MSR slowly increaseas (d, σ) grow. For small
(d, σ), the MSR has a unique critical point, which we
call the MSR apex. The Internet point is located very
close to the apex, which is characterized by the shortest
distance between the sets of minimums of the average
stretch functions(d, σ)—along thed- and σ-axes. We
denote these two sets byMd and Mσ respectively. We
find thatMd andMσ almost toucheach other at the apex.

The MSR apex can be more easily observed in
Fig. 3(d) showing a projection of Fig. 3(c) on thed-σ
plane. The solid lines represent the above two sets of
minimums forming the MSR, and the Internet point is
very near their closest segment.

An opportunity to look at the apex from yet another
angle is presented in Fig. 3(e) showing a projection of
Fig. 3(c) on thed-s plane. We see that starting from
the apex, asd increases, the minimum stretch values
along thed- and σ-directions become virtually equal
and slowlydecreaseasd grows. We also note thatGn,p

graphs are far away from the apex and that they have
average stretch values that are far from minimal.

We can see now that the apex is indeed a critical
or “phase transition” point since it is located at the
boundary of the two regions of the average stretch
function. The first region, the MSR, is characterized by
lowest possible stretch values corresponding to distance
distributions observed in real-world graphs. The second
region, with substantially higher average stretch values,
corresponds to distance distributions in more regular
graphs.

To illustrate this point in more detail, we turn our
attention back to Fig. 3(d). We observe that the two sets
of minimums,Md andMσ, are linear whenσ > 1. The
dashed lines represent the linear fits ofMd andMσ in the
area withσ > 1. The exact location of the intersection
of these fits is(d?

, σ?) = (3.16, 0.97). If the linear form
of Md and Mσ sustained forσ < 1 as well, thenMd

and Mσ would intersect at(d?
, σ?), where we would

observe a stationary8 point of s(d, σ), which we could
then test for the presence of an extremum of the stretch
function. This does not happen, however. Instead, asd
andσ become small, the linear behavior breaks near the
apex due to increasingly “more discrete” structure of the
distance distribution ([21]).

In the extended version of this paper [21], we show
that linearity ofMd andMσ can be analytically derived
from the fact that the distance distribution is taken to
be Gaussian. Of course, this does not explain why the
Internet is so close either to the MSR or to its apex.

The linear form ofMd and Mσ in the MSR sheds
some light on a closely related issue of why the average
stretch is virtually independent ofγ. In Fig. 3(d), the
shaded area represents a set of(d, σ), for which the
average stretch is approximately the same as for the
Internet, MI =

{
(d, σ)

∣∣ s(d, σ) ∼ s(3.4, 0.9)
}

.
We see that in the MSR, theMI boundaries are almost
parallel straight lines. Therefore, if the average stretch is
to be independent ofγ, which is observed in Section IV-
B, then the points representing distance distributions
in power-law graphs,(dγ , σγ) from Fig. 1(b), should
lie along theMI boundaries, and this is what indeed
happens. Yet again, the linear relation betweendγ andσγ

in the power-law graphs, and the fact that this relation is
just as required for the average TZ stretch being virtually
independent ofγ, come from two seemingly disjoint
domains.

To finish the list of various “coincidences,” we con-
struct a linear fit of (dγ , σγ) (the bottom-most dashed line
in Fig. 3(d)). The Internet point,γ = 2.1, lies on this
line. Our numeric analysis shows that the Internet value
of γ = 2.1 minimizes the distance between the linear
fit of (dγ , σγ) and (d?

, σ?), which is the intersection
of the linear fits ofMd and Mσ. In other words, the
Internet distance distribution is the point that isclosest
to the MSR apex, compared to distance distributions in
all other scale-free graphs with power-law node degree
distributions.

8Recall that a function has a stationary point where all its first-
order partial derivatives are zero. Thus, we can call the apex aquasi-
stationarypoint emphasizing that∂s/∂d and∂s/∂σ are bothnearly
zero at the apex.



VI. CONCLUSIONS

We find that the TZ routing scheme applied to the
Internet inter-AS graph results in a very low average
stretch and succinct routing tables that are well below
their upper bounds. The primary reason why the average
stretch is of a great concern is that the TZ scheme is not
a stretch-1 scheme, while Internet interdomain routing is
essentially shortest path routing.9 Thus, any stretchs > 1
routing scheme applied to the Internet would involve
augmentation, in one form or another, of the routing
information provided by the scheme with the shortest
path routing information for some (or all) non-shortest
paths.

Our principal finding, that the TZ stretch on the
Internet graph is reasonably low, opens a well-defined
path for future work in the area of applying relevant
theoretical results obtained for routing to realistic scale-
free networks. One of the immediate next problems
on this path is the performance analysis ofdynamic
low-stretch routing schemes on scale-free graphs. The
TZ scheme is not optimal for the dynamic case since
it labels nodes with topology-sensitive information. In
other words, it is not name-independent. As soon as
topology changes, nodes need to be relabelled. Signifi-
cant progress in construction of name-independent low-
stretch routing schemes has been recently made by Arias,
Cowen, et al. in [30].

More importantly, however, we find that the Internet
shortest path length distribution is at the minimal dis-
tance from the unique critical point of the average stretch
function. At present we lack sufficient information to
show cause for this effect, but we do believe it strongly
suggests the average stretch function may be an indirect
(or even direct) indicator of some yet-to-be discovered
process that has influenced the Internet’s topological
evolution. In other words, a rigorous explanation of this
phenomenon would probably require much deeper under-
standing of the Internet evolution principles and demon-
stration of a link between them and the TZ scheme.
This question is of great interest, as the fundamental
laws governing the Internet evolution remain unclear.
Therefore, a proper explanation of this effect may help
us in our intent to move, [1], from purelydescriptive
Internet evolution models to moreexplanatoryones, in
the terminology of the program outlined in [18].

9A routing scheme that would prevent, for example, a pair of ASs
from utilizing a peering link between them is not realistic, of course.
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APPENDIX

In this appendix, we calculate a rough estimate of
the stretch factor of the Kleinrock-Kamoun (KK) hi-
erarchical routing scheme, [4], applied to the observed
Internet interdomain topology. We find that the stretch is
very high, which is consistent with the observation made
in [4] that the approach used there works reasonably
well only for sparsely connected networks. The scale-
free networks, on the contrary, are extremely densely
connected.

Recall that [4] assumes the existence of a hierarchical
partitioning of a network of sizen into m levels of
clusters. Eachk-level cluster consists ofn1/m (k − 1)-
level clusters,k = 1 . . . m, 0-level clusters being nodes.
The optimal clustering is achieved whenm ∼ log n.
There are a few other fairly strong assumptions about
the properties of the required partitioning. Neither an
algorithm for its construction nor proof of its existence
are delivered, but if it does exist then the stretch factor
is shown to be

s = 1 +
1
d

m−1∑

k=1

[
1− n

k

m − 1
n− 1

]
dk, (20)

whered is the network average distance anddk is the
diameter of ak-level cluster.

It is further assumed in [4] that both the network
diameter and average distance are power-law functions of
the network size. This is certainly not true for scale-free
networks with power-lawnode degreedistributions. For
recent results on the average distance in such networks,
see [29], [23]. In the numerical evaluations in this
appendix, we use the value ofd ∼ 3.6 observed in the
Internet, [26].

As shown in [29], thediameter of networks with
power-law node degree distribution with exponentγ
lying between2 and3 scales almost surely asΘ(log n).
For the Internet,γ ∼ 2.1, and since the Internet sizen ∼

1.5 × 104 is relatively large, we may write the Internet
diameterD as D ∼ c log n with some multiplicative
coefficientc. The observed value ofD, D ∼ 13 ([26]),
definesc.

The size of ak-level cluster is obviouslynk/m but
nothing rigorous can be said about its degree distribution
since there is no procedure for its construction. Thus, it
is natural to assume that its degree distribution is also
power-law with 2 < γ < 3, which gives an estimate
of the k-level cluster diameter asdk ∼ c log nk/m ∼
Dk/m. Substituting this in (20) and performing sum-
mation gives

s ∼ 1 +
D

2d

[
m

n

n− 1
− n(n

2
m − 1)

(n− 1)(n
1
m − 1)2

+
2
m

n
1
m

(n
1
m − 1)2

]
.

(21)

Using the numerical values forn, d, D, and optimal
m = 10, we can see that the KK stretch factor on the
Internet interdomain topology is

s ∼ 15. (22)

Note that a 15-times path length increase in the Internet
would lead to AS path lengths of∼ 55 and IP hop path
lengths of∼ 150.

The stretch factor is a nearly linear function of the
number of hierarchical levelsm, which follows directly
from (21) since, for largen, (21) can be rewritten as

s ∼ 1 +
D

2d
(m− 1). (23)

UsingD ∼ log n, d ∼ log log n ([29]), and optimalm ∼
log n, we obtain the following estimate of the stretch
factor as a function of the network size:

s ∼ log2 n

log log n
. (24)


