DTLSR: Delay Tolerant Routing for Developing Regions

Michael Demmer
Computer Science Division
University of California, Berkeley
Berkeley CA 94720, USA

demmer@cs.berkeley.edu

ABSTRACT

We consider the problem of routing in delay tolerant networks de-
ployed in developing regions. Although these environments expe-
rience intermittent connectivity (hence the desire to use DTN), in
many cases the topology has an underlying stability that we can ex-
ploit when designing routing protocols. By making small, yet crit-
ical, modifications to classical link state routing, we derive a more
effective algorithm capable of leveraging predictions of future link
uptimes. We describe a complete and fully-implemented protocol,
capable of being deployed in the DTN reference implementation
without modification. Using a simulation incorporating real-world
network characteristics, we demonstrate that our system operates
effectively when conventional routing and forwarding may fail.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols

General Terms

Algorithms, Performance, Design

Keywords

Routing, Delay Tolerant Networks, Developing Regions

1. INTRODUCTION

Although the Delay Tolerant Networking Architecture [4, 9] seeks
to address the needs of challenged networks such as those in devel-
oping regions, the lack of a deployable routing protocol implemen-
tation inhibits the ability of the DTN reference implementation [6]
to be useful for real world deployments. Perhaps ironically, one of
the challenges in developing a robust DTN routing algorithm is the
large scope for which the architecture is applicable [10]. In partic-
ular, DTN has been proposed for use in mobile ad-hoc networks,
deep-space environments, underwater and nautical buoy deploy-
ments, sensor networks, as well as many developing region con-
texts. These environments display a wide range of connectivity and
node characteristics. While the DTN architecture provides a com-
mon service framework for data forwarding, it does not mandate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NSDR’07, August 27, 2007, Kyoto, Japan.

Copyright 2007 ACM 978-1-59593-787-2/07/0008 ...$5.00.

Kevin Fall
Intel Research Berkeley
2150 Shattuck Ave, Penthouse Suite
Berkeley CA 94704, USA

kfall@intel.com

a particular routing protocol, instead offering a framework where
a variety of routing protocols can be used. Such protocols may
be applicable to the entire scope of network types for which DTN
is designed, or may instead be applicable for use in specific areas
within a network that exhibit particular properties.

In this work we focus on the types of networks typical of ru-
ral areas in developing regions, based on our experience deploying
wireless networks in countries such as India, Cambodia, Uganda
and Ghana. These environments experience intermittent connec-
tivity due to a variety of reasons, yet the topology often has an
underlying stability. In particular, the set of neighbors for any node
is usually small and does not change frequently; network dynamics
result from link failures rather than unpredictable node mobility.

In a common scenario where connectivity is provided by dialup
modem or satellite links, nodes are typically fixed computers in an
information center or kiosk, and outages occur due to unmanage-
able congestion or signal loss [8]. These outages create a network
partition between a subset of the network (i.e. computers in the
center) and the rest of the Internet or extended LAN. In the case of
long-distance point-to-point wireless links [17], interference and/or
unreliable power can cause short-term outages on the links, yet the
placement of towers and antennas means that neighbor relation-
ships between routers are fixed over the long-term.

Even in cases where connectivity is provided by ferrying data
(i.e. data mules or buses) network dynamics have a significant reg-
ularity, as the mobile routes are known in advance. For example, in
the environments typified by DakNet [18], store-and-forward con-
nectivity is provided by physical transfer of data using motorcycles.
Because the vehicles travel on regular routes and visit the same set
of end points, they have a contact regularity that does not really fit
into the mobile ad-hoc networking (MANET) model of a mobile
node, generally characterized as having more random mobility.

Thus, in contrast to highly mobile or unstructured environments,
many networks in developing regions have a comparatively stable
and predictable underlying topological structure. Despite periodic
link outages, the relationships between nodes are stable, and the
network topology is more akin to classical wired networks than to
MANETSs with random node mobility patterns. In this work we
leverage this insight to develop an effective routing protocol for
intermittent networks in developing regions.

2. ROUTING PROTOCOL DESIGN SPACE

To design a routing protocol that is well suited for DTN opera-
tions in the types of networks we are interested in, we first exam-
ine standard distributed routing approaches, more recent MANET
routing protocols, and contemporary DTN routing protocols. We
wish to develop a protocol that simultaneously provides good per-
formance for the above-mentioned environments, while avoiding

unneeded complexity. Therefore, we leverage existing protocols
whenever possible, and only augment them where we believe the
benefit to be substantial.

2.1 Standard Approaches

Standard well-known distributed algorithms for routing include
distance vector (DV), path vector (PV), and link state (LS). For the
purposes of this discussion, DV and PV have fundamentally the
same characteristics, so we discuss DV without loss of generality.
Unless otherwise specified, we describe the ordinary operation of
DV and LS that select paths based on a message’s destination and
make independent forwarding decisions at each hop.

A node’s correct DV operation depends on the correctness of
routing tables present at its neighbors. Nodes provide only their
chosen next hop for each destination, so the path selected is based
on the use of a common routing metric implemented by all partic-
ipants in the routing graph. Failure to use the same metric leads
to loops or dead-ends. DV has been popular due to its simplic-
ity; early versions computed a single shortest path based on hop
count, though more sophisticated variants (e.g. EIGRP [1]) include
alternate metrics and multi-path routing. Concerns with DV rout-
ing generally include scalability and convergence time problems.
In particular, changes are propagated by (re)announcing an entire
routing table, that are processed by each node (taking some time)
and the resulting table is again advertised.

LS routing involves informing all nodes of the network topol-
ogy and allowing each node to independently compute its preferred
next hop(s). The topology is generally flooded using link state an-
nouncements (LSAs), which may also contain other information
relating to a node’s state (e.g. buffer occupancy, location, etc). Be-
cause a node receiving LSAs becomes informed of the entire net-
work topology, it can make full path decisions for traffic, rather
than next-hop decisions, although this is atypical in practice. To
implement path selection, forwarding nodes would need to support
some form of source routing. Drawbacks of LS routing are mostly
issues of scalability, as each node must store the full network graph
and recompute paths after modification. A common technique to
improve scalability is to divide the network into sub-regions (such
as in OSPF areas [16]), using different protocol instances in each
region and an inter-region protocol to span the divisions.

Selection of entire paths (instead of only next hops) can also
be implemented using tag switching as with multi-protocol label
switching (MPLS [19]). Tags can be assigned using a distributed
or centralized routing algorithm based on a function of the mes-
sage or other network properties Message-to-tag bindings are then
distributed to label switches using some update protocol or can be
piggybacked on a routing protocol. Tags may be also be re-assigned
or pushed and popped from a label stack at each hop.

2.2 MANET Routing

Mobile ad-hoc routing is focused on situations where mobile
nodes act as routers. MANET routing schemes fall broadly into
the two major categories of proactive and reactive. Proactive pro-
tocols compute routes ahead of time; reactive protocols compute
a route to a destination when traffic for the destination is ready
to be sent. Reactive protocols save network resources by not ad-
vertising routes that are never used, but initial traffic for a new
destination may be delayed as the route discovery process takes
place on-demand. Typically, MANET protocol evaluation is per-
formed using network simulation with a mobility model dictating
where nodes move. While nodes move, some network path (a cas-
caded list of nodes) is generally assumed to be available between
any sender and receiver.

DV, LS, and source routing have all been used in MANET con-
texts. In each case, the goal of routing convergence is to determine
an immediately available path from source to destination. In areas
where node coverage is dense, this approach may be appropriate.
For rural areas in developing regions, however, this is rarely the
case. Moreover, while MANET routing tends to focus on select-
ing paths from many options, we are instead interested in being as
efficient as possible with the few paths we have available.

2.3 DTN Routing

When an end-to-end path may fail to exist between a source and
destination, both standard and MANET routing protocols no longer
suffice. As a result, a number of proposals for disruption or delay
tolerant (DTN) routing have recently surfaced. These schemes do
not assume that an end-to-end network path necessarily exists, but
rather than such paths(s) exist over time. In addition, routing infor-
mation is not always assumed to be 100% accurate — a node may
only have a probabilistic chance of successfully delivering a mes-
sage. Thus, message replication is typically used to enhance de-
livery probability. Due to the richness and apparent novelty of the
DTN routing problem, it has been a very active area of research.
Although numerous routing designs have been proposed, few have
been used in practice; we now briefly discuss a few that have.

The simplest DTN routing protocol is flooding or epidemic flood-
ing. In this scheme, messages are simply copied to any node that
is reachable and does not already have a copy of the message. As
new nodes become reachable due to mobility or other reasons, addi-
tional copies are made. Because of the overhead of these schemes,
they are generally deemed to be too expensive for practical use, al-
though they have been used for small networks (e.g. in Zebranet [14]).

The Prophet routing protocol [15] bases the likelihood of a next
hop being able to successfully deliver a packet on its previous be-
havior, and only replicates a message if this probability exceeds a
threshold. This protocol has been used in a real application — to
provide basic Internet access (web, email) for Reindeer herders in
northern Sweden [7].

The Maxprop and RAPID protocols have been used in the con-
text of DieselNet, a network of buses in Amherst, MA [2, 3]. These
protocols rely on distributed algorithms to optimize delivery using
constrained replication in the face of limited storage and bandwidth
resources. Both Prophet and the DieselNet approaches assume a
fairly random connectivity graph, unlike the networks we typically
see in developing regions, and the protocols reflect this assumption
in their structure.

Finally, in work that is most closely related to ours, Seth, et
al. [21] propose an architecture for connecting rural kiosks in devel-
oping regions using a combination of DTN routing over regular bus
routes and proxies connected to the Internet that use a distributed
hash table for node location. The authors suggest that one limita-
tion in their current system is the lack of a deployable DTN routing
framework, for which this work would be appropriate.

3. WHY LINK STATE

Although there is a wide range of starting points from which we
may base a design for DTN routing in our networks of interest, we
believe a modified standard link state approach offers the greatest
flexibility and suitability to our needs.

3.1 Features of Link State

Link state LSAs, by definition, convey the connectivity status
of nodes in the network, and when aggregated provide a complete
picture of the topology. Therefore, collecting sets of LSAs over
time gives the time evolution of the network topology. This is pre-

2
=
@@ @ il
c
§ MJ1risec
time "

Figure 1: Simple three node network with no end to end
path. Conventional routing protocols will never discover con-
nectivity between A and C.

cisely the type of information needed to compute paths over time
and multi-path routes. In addition, LSAs can easily carry additional
information that may be of interest. For DTN, normal LSAs can be
expanded to include buffer occupancy, and shortest path compu-
tations can be weighted based on both link availability and buffer
occupancy [12].

Although MANET style link state approaches may be useful for
the connected components of the topology graph in our scenario,
protocols such as OLSR [5] are designed both for large scale, which
is not typical of the types of access networks we typically find in
developing areas, and for networks with end-to-end connectivity.
Therefore, it is both more complicated than we require in terms
of scaling and yet insufficient for helping to determine routes over
time we desire for DTN routing.

Turning to DTN routing approaches, much of the existing work
is targeted at supporting opportunistic connectivity and involves
message replication. Given that our scenarios do not typically in-
volve much mobility, and the mobility that is present is relatively
periodic (e.g. buses), the benefit of replication seems limited. Thus,
even though algorithms like RAPID or MaxProp may be adequate
for our networks, a simpler and more efficient approach is to mod-
ify a standard link-state algorithm.

In choosing link state as the basis for a DTN routing algorithm,
we inherit some other appealing properties of link state routing.
For example, in connected portions of the network, LSAs are prop-
agated relatively quickly, leading to fast convergence. Furthermore,
the size of an LSA is limited, as the size of the networks we have
found to date are small (significantly less than 100 nodes). If we
augment nodes with forwarding based on tags or source routes, we
can also support multiple forwarding metrics and paths simultane-
ously (e.g. based on message size, priority, message content).

Link state also has two practical features which are of interest
in field deployments. First, because nodes build an entire topology
picture, remote management and network configuration is simpler
relative to other schemes — the entire network topology is available
by interrogating any single node. Finally, the “control” network
carrying LSAs need not necessarily be the same network that car-
ries message data. This separation can be useful in scenarios where
low-bandwidth routing information can be cost-effectively trans-
ferred by other means (e.g. by SMS) but data traffic cannot.

3.2 Modifying Standard Link State

Consider the example network shown in Figure 1, where at no
point in time is there an active end to end path between nodes A and
C. DTN’s store and forward operation can clearly forward a mes-
sage from A to B, then queue it, waiting for the B-C link to become
active. This is not possible in conventional routing and data packet
forwarding; when links are down, they are removed from consid-
eration for routing (i.e. partitions equal failure). Thus, the route
computation would never discover the fact that with store/forward,
a message could be conveyed from A-B-C just fine.

To modify standard link state, we wish to consider that even

though a link may not be available currently, it may become so
in the future. For our networks of interest, the future probability a
link may become available is likely to be related to its past. Thus
we first require LSAs that can persist across partitions, and we also
need a modified shortest path computation that can leverage a link’s
dynamic history.

4. THE DTLSR PROTOCOL

Delay Tolerant Link State Routing (DTLSR) is modelled closely
on classic link state algorithms. As the network state changes, link
state announcements are flooded throughout the network. Each
node maintains a graph representing its current view of the state
of the network, and uses a shortest path computation (e.g. Dijkstra)
to find routes for messages.

Borrowing a similar idea from OSPF [16], each node in the sys-
tem is assigned to an administrative area, and a link state protocol
instance operates only within a single area. This helps to constrain
the size of the network graph and limits the scope of announcement
messages, if required. Nodes that have neighbors in other areas
learn the set of endpoint identifiers reachable via the other area and
announce themselves as a gateway to those endpoint identifiers.

4.1 Messages and Flooding

Link State Announcement (LSA) messages convey the network
connectivity for a node in the system. Each LSA contains the
source node’s endpoint identifier, a sequence number, an area iden-
tifier, and a vector of link state information. The per-link infor-
mation includes the next hop destination, measured (or configured)
bandwidth and latency, configurable cost, and queue occupancy.
In our current implementation, we include the full set of link in-
formation in each LSA update, and do not separate the vector of
neighbors from the details about each neighbor.

Unlike some classical approaches, we do not rely on announce-
ments to determine the next-hop neighborhood relationships. Be-
cause DTN is an overlay network, the different transports (called
convergence layers) may have protocol-specific mechanisms for
discovering nearby nodes. The convergence layers therefore issue
upcalls to the routing layer when connectivity is detected (or lost)
between nodes, and the routing layer distributes this connectivity
information throughout the network.

To distribute these messages throughout an area efficiently, we
implemented a constrained flooding algorithm within the DTN bun-
dle forwarding layer. LSA messages are sent as bundles with a
wildcard destination; in our current implementation, we use
dtn://*/dtlsr?area=xyz. Thus the bundle is forwarded to
all adjacent nodes (due to the » wildcard), delivered to the router
application (due to the dt1lsr service), but forwarding is con-
strained to nodes in area xy z.

4.2 Update Frequency / Expiration

In traditional link state routing, nodes are responsible for both
determining reachability to their immediate neighbors, and for im-
plementing a flooding protocol to distribute LSAs throughout the
network. When a new link is established or a partition is healed,
nodes on either side of the link learn of each others’ reachabil-
ity when they receive acknowledgments for their queries (e.g. the
OSPF HELLO protocol). If a node A fails to hear enough HELLO
responses from its neighbor node B after some time, A infers that
the link between A and B is down.

In contrast, DTLSR operates in a DTN, where nodes are assumed
to have long term storage they can use for store-and-forward oper-
ations on messages even when some links are down. That is, a path
may be a valid DTN route even if it does not provide current con-

nectivity to a particular destination, and the lack of recent contact
with a neighbor does not imply that the node is necessarily down.

Thus, the first major distinction of the DTLSR algorithm as com-
pared with conventional LS is that LSAs are sent with very long
lifetimes (on the order of hours or even days), and all nodes main-
tain a persistent cached copy of the most recently LSA from other
nodes in the area. Nodes therefore queue LSA updates in case of a
network partition, and when a link is established to a neighbor, the
flooding process checks whether or not each cached message needs
to be sent to that neighbor.

This feature means that a node does not need to periodically re-
broadcast LSAs to ensure propagation to all nodes. Regardless of
what the network connectivity state is when an LSA is generated,
all eventually reachable nodes will receive all LSAs. Therefore a
DTLSR node only needs to generate an LSA if it determines there
is some new information to convey that affects the route weight
computations (described below). In our current implementation,
we only send LSAs in response to link state changes, and all LSAs
have a lifetime of one year.

4.3 Calculating Best Paths

Calculation of shortest (or “best”) paths using conventional LS
routing is straightforward. If a path is currently available between
two nodes, then traditional metrics such as hop count work ade-
quately for many situations. The challenge for DTLSR is deter-
mining how to utilize paths that may not be available at the time
when a node needs to make a routing decision, but which may be
available in time before a message expires.

Building on conclusions from prior work on DTN routing [12],
we chose to focus on minimizing the expected delay for all mes-
sages as a proxy for maximizing the overall delivery rate. How-
ever, because a node may have an incomplete or inaccurate view of
the network, we follow an approach of minimizing the estimated
expected delay (MEED), introduced by Jones, et al [13].

When computing paths, a node can use local knowledge about
link connectivity, queueing, and traffic, the current snapshot of the
state of the rest of the network, and historical data conveyed in
LSAs or calculated locally. From this information, the node cal-
culates an estimate for the delay that it would take to forward a
message using the given link. In our current prototype, we use a
simple heuristic that uses only the most recent network snapshot.

We distinguish between links thought to be available from those
thought to be down when calculating paths. For available links, the
delay to send a message on a link includes the time to first drain
the link queue. Thus using estimates of the number of messages
and total size of the link queue (gnum & glen), the per-message
latency of the link (latency) and the bandwidth of the link (bw),
we calculate the estimated delay as gnum X latency + glen X bw.

For unavailable links, we use the duration of the outage so far
(capped at 24 hours) as an estimate of the delay — this simple heuris-
tic captures the belief that links which have been down for a long
time are unlikely to come up soon, and allows us to easily include a
time dimension when computing the best path. This approach also
effectively ignores the transmission and propagation delay of links
considered to be down; this is reasonable, as outage durations tend
to be far in excess of propagation and transmission delays on the
types of links we are considering.

The key distinction between DTLSR and conventional LS rout-
ing with respect to best path computation is that in DTLSR even
links to currently-unreachable nodes are eligible components of
best paths. In contrast, classical link state routing removes unavail-
able links from path consideration, and thus can only compute paths
that are available at the time of route computation.

Periakulum

Andipatti

Ambasam

+ Vision Center
@ Relay

lil Hospital

— Wireless Link

Chinnamanur

Figure 2: Map of the Aravind wireless network used as a
basis for the simulation experiments.

5. EVALUATION

We implemented the DTLSR protocol in C++ as a routing algo-
rithm option for the DTN reference implementation (DTNRI) [6].
All communication, for both application traffic and LSAs, is per-
formed using DTN bundles [20]. Using bundles to carry LSAs al-
lows the algorithms and protocols studied to be deployed in a va-
riety of operating environments, thanks to the DTNRI’s support of
various underlying transport protocols.

This decision also allows us to compare the behavior of DTLSR
with conventional LS routing by using different values for the DTN
bundle lifetime field. More specifically, using short lifetimes rela-
tive to link down times emulates Internet-style forwarding. Sending
messages with long lifetimes uses DTN’s long-term store and for-
ward capability to queue messages and wait for a partition to heal.

Also, we can select one of two link weight functions used for
route computation. The first (called LSR) assigns a constant weight
to links that are up and an infinite weight to links that are down. The
second (DTLSR) is the weight function described above in Section
4.3 that estimates the delay for each link.

5.1 Protocols Compared

In the following discussion, we denote a particular algorithm as
FN [Eifp“p] FN is one of the two weight functions mentioned above.
The Eqypp subscript expresses the lifetime of application messages,
and the E'*® superscript expresses the lifetime of LSA messages.

The LSR[E32:¢¢] algorithm is most akin to classical link state
routing and Internet style forwarding. LSA messages have a short
lifetime of five seconds and are broadcast both after each link state
change and also periodically every five minutes. As mentioned
above, the LSR weight function only chooses paths that are known
to be up, so this algorithm will only be able to route to the currently-
connected component of the network. Furthermore, the lifetime on
each application message is set to 30 seconds, so a message is only
delivered successfully if the system finds an end to end path at the
time when the message was sent or soon thereafter. We expect this
algorithm to do poorly, as it cannot take advantage of the DTN
long-term store and forward capability.

In the LSR[EZ""] algorithm, we use the same LSR weight
function and LSA parameters as the previous algorithm, but in-
crease the application message lifetime to twelve hours. This means
that a router may queue application messages at the source for some
time, waiting for a route to arrive. However, application messages
are only forwarded if the router finds an available end to end path.

100%

80% 1 —o— LSR[E3%
—— LSR[EZ
60% +
= LSR[E']

40% 7 —&— DTLSRIEY]

Message Completion Ratio

a DTLSREZY

20% +---- (with bus)

40% 60% 80% 100%

Link Uptime Percentage

0% 20%

Figure 3: Message delivery for various routing algorithms on
the simulated Aravind network. LSR[E*%:] emulates tradi-
tional link state and Internet-style forwarding, exhibiting poor
performance as link quality degrades. In LSR[E'2".] and
LSRIE'Z)], long message lifetimes enable queuing until an
end to end route is present. DTLSR[E'})y] further improves
delivery by using partially down routes and leveraging pre-
dicted future uptimes, and is the only algorithm to gain addi-
tional benefit from the bus links.

In the LSR[E'7}7] algorithm, we use the same weight function
as before, but adopt the changes described in Section 4.2 by in-
creasing the LSA lifetime to one year (essentially infinite). Nodes
store the most recent LSA received from all other nodes, so when a
partition is repaired, LSA updates stored on one side of the partition
are transferred to the other right away. We therefore only need to
send new LSAs when the link state changes, not every five minutes.

Finally, the DTLSR[E 1%’;2 algorithm also sends LSAs with a
one year lifetime, but uses a weight function that computes the ex-
pected delay of the link, as described in Section 4.3. Therefore this
algorithm may select paths that include links which are down at
the time of route selection but are believed to come up again in the
future, before the application message expires.

5.2 Simulation Scenario

The DTNRI can be deployed in the field as a routing daemon,
and also compiled into a single process discrete event simulator.
For this evaluation, we use its simulation capability to run exper-
iments modeled on a long-distance wireless network our research
group has deployed to connect remote rural vision centers with the
Aravind Eye Hospital in Tamil Nadu, India [22]. Figure 2 depicts a
map of this network, including the distances between the five cen-
ters, each of which is connected to the central hospital in Theni
using wireless relay nodes.

The goal of this set of experiments is to compare the performance
of DTLSR to a traditional link state routing algorithm as we vary
the network connectivity. We fixed the bandwidth for each wireless
link at 1Mbps and 10ms latency, and arrange to send a 64KB appli-
cation message once per hour from each center to all other centers.
We then bring the wireless links up and down randomly to achieve
a desired average uptime percentage, and vary this percentage for
the different experiments.

In addition to the wireless links, we also ran experiments in
which we simulated buses that travelled between the hospital at
Theni to each of the vision centers. We assume the drive takes two
hours, the bus lingers at each center for five minutes, and when con-
nected, the bandwidth between a bus and a center is 100Mbps. We
assume buses always reach their destinations, and have no storage

100%

80% 1 -~ LSR[E%]
—— LSR[EZN
60% A
=4 LSR[E'?Y]

40% 1 —— DTLSR[E2Y]

m— DTLSR[E'?]
(with bus)

20% -

Average Delivery Delay / Lifetime

0%

40% 60% 80% 100%

Link Uptime Percentage

0% 20%

Figure 4: The percentage of a message’s lifetime that it
spent in the network for various routing algorithms on the ex-
periments described in Figure 3. Results show that DTLSR
accurately chooses between the wireless links and the bus
link to minimize the delay in most cases.

limit. Thus, if a router always forwards using the buses, all mes-
sages would ultimately be delivered, but only after a relatively long
delay. Also, only the DTLSR algorithm can take advantage of these
links, as discussed in Section 3.2. We therefore only plot results for
the buses using the DTLSR algorithm, as the other schemes have
identical results with or without the buses.

All message activity, including both application messages and
LSA updates, was logged at each hop. We then calculated the end
to end delay for each message that was delivered successfully. We
simulated one month of operation for each experiment.

5.3 Delivery Results

Figure 3 shows the message completion ratio (i.e. the percentage
of the transmitted application messages that arrived before they ex-
pired or the simulation time ended) as we varied the average uptime
of the wireless links.

As expected, the LSR[E?%:¢] algorithm achieves no progress
when the link uptime percentage is low (below 20%), but improves
exponentially with increased link uptime percentage, since the prob-
ability of delivering a message depends on all links along the path
being up at the same time. In this experiment, routing cannot use
the DTN store and forward capability effectively because applica-
tion messages expire too soon.

Inthe LSR[E 1525’182] experiment, application messages can be queued
for relatively long periods of time at the source. This approach de-
livers a large percentage of messages successfully, provided the av-
erage link uptime is at least 60%, because the probability is quite
high that an end to end path will be found before any message ex-
pires. However, the delivery ratio declines sharply as the link up-
time percentage declines below 60%, resulting in a very low mes-
sage completion rate with a link uptime percentage of 20% or less.
The LSR[E%Z,,T.] algorithm shows virtually identical delivery re-
sults, though it requires much less LSA traffic to update its routing
state since LSAs are not sent periodically with high frequency.

Because the DTLSR[E'3] algorithm can estimate that a down
link may come up in the future, it need not wait for all links along
the path to be up in order to find a path and can instead predictively
forward messages along the expected best path. Thus, DTLSR ex-
hibits much better performance, delivering close to 80% of all mes-
sages even with only 30% link uptime.

Finally, when we add the buses to the environment, DTLSR rec-
ognizes the wireless network is performing poorly and shifts traffic

to the buses instead, resulting in high message completion ratios
regardless of the wireless link uptime percentage. The initial de-
cline in performance of DTLSR with buses between 0% and 10%
link uptime percentage is the result of an imperfect route prediction
algorithm; when the wireless network is very bad, DTLSR some-
times makes the wrong decision to use a wireless link as opposed
to waiting for the bus. However, overall the heuristic seems to per-
form fairly well.

5.4 Delay Results

Figure 4 shows the average time each application message re-
mained in the system as a function of its lifetime, i.e. messages
delivered immediately spent a small fraction of their lifetime in the
network, while expired messages spent 100% of their lifetime in the
network. These results mirror the message completion ratio graph,
as reducing the delay of messages in the system results in a better
delivery ratio.

This result also demonstrates that in the scenario when the buses
are included, DTLSR makes the right decision about whether to
forward messages to the bus or to the wireless network, since the
average delay is strictly lower when the buses are used. Were the
system to have only used the buses, all messages would be deliv-
ered, but the average delay would have been much higher.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we described the DTLSR routing protocol, adapt-
ing link state routing techniques for intermittent networks in devel-
oping regions. The key insight of our approach is that because the
underlying topology is often stable, fairly minor changes to a clas-
sic algorithm result in an effective routing system for intermittent
networks.

We are encouraged by the success with which a simple weighting
heuristic can capture the path selection criteria for these networks.
To continue this investigation, we plan to explore more sophisti-
cated weight functions along with richer state conveyed in LSA
messages that more accurately account for buffer occupancy and
message queueing. Additionally, we plan to explore tradeoffs in
determining when to send new LSAs.

We also plan to add support for advertisement of external routes
to allow areas of DTLSR deployment to interoperate by exchanging
summaries of the set of reachable endpoint identifiers across an
area boundary. This feature is needed for inter-area routing as well
as integration with other routing protocols.

Our approach also lends itself to integration with prior work
on sending erasure coded bundle fragments over multiple paths
to achieve high probability that a bundle arrives at its destination
without error [11]. DTLSR can calculate estimates of link deliv-
ery probabilities based on uptime history, thus a path selection al-
gorithm is straightforward: a node iteratively selects paths using
a weight function that biases for both link delivery probability and
independence with other paths, continuing the process until enough
paths are chosen to achieve a desired delivery probability. We also
plan to develop a simple source routing mechanism to implement
these decisions.

Finally, we plan to deploy DTN-enabled applications in several
developing regions, including log collection and remote manage-
ment for our networks in India and Ghana, a pilot telemedecine
system also in Ghana, and distribution of syndicated radio content
in Guinea Bissau. All of these deployments fit the general charac-
teristics for which we designed DTLSR, and therefore we expect to
gain additional insights into the characteristics of how links behave
in the field and to the efficacy of our approach.

7. REFERENCES

[1] ALBRIGHTSON, B., GARCIA-LUNA-ACEVES, J., AND
BOYLE, J. EIGRP - a fast routing protocol based on distance
vectors.

[2] BALASUBRAMANIAN, A., LEVINE, B., AND
VENKATARAMANI, A. DTN Routing as a Resource
Allocation Problem. In SIGCOMM (Aug. 2007).

[3] BURGESS, J., GALLAGHER, B., JENSEN, D., AND
LEVINE, B. MaxProp: Routing for vehicle-based
disruption-tolerant networks. In Infocom (2006).

[4] CERF, V., ET AL. RFC 4838: Delay-tolerant networking
architecture, Apr. 2007.

[5S] CLAUSEN, T., AND JACQUET, P. RFC 3626: Optimized link
state routing protocol (OLSR), Oct. 2003.

[6] DEMMER, M., ET AL. Implementing Delay Tolerant
Networking. Tech. Rep. IRB-TR-04-020, Intel Research
Berkeley, Dec. 2004.

[7] DoORIA, A., UDEN, M., AND PANDEY, D. P. Providing
Connectivity to the Saami Nomadic Community. In
Development by Design Conference (2002).

[8] Du, B., DEMMER, M., AND BREWER, E. Analysis of
WWW traffic in Cambodia and Ghana. In WWW (2006).

[9] FALL, K. A delay-tolerant network architecture for
challenged internets. In SIGCOMM (2003).

[10] FARRELL, S., AND CAHILL, V. Delay- and
Disruption-Tolerant Networking. Artech House, 2006.

[11] JAIN, S., DEMMER, M., PATRA, R., AND FALL, K. Using
redundancy to cope with failures in a delay tolerant network.
In SIGCOMM (2005).

[12] JAIN, S., FALL, K., AND PATRA, R. Routing in a Delay
Tolerant Network. In SIGCOMM (Sept. 2004).

[13] JONES, E., L1, L., AND WARD, P. Practical routing in
delay-tolerant networks. In WDTN (2005).

[14] JUANG, P., OKI1, H., WANG, Y., ET AL. Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet. In ASPLOS-X (Oct. 2002).

[15] LINDGREN, A., DORIA, A., AND SCHELEN, O.
Probabilistic routing in intermittently connected networks. In
SAPIR (August 2004).

[16] Moy, J. RFC 2328: OSPF version 2, Apr. 1998.

[17] PATRA, R., NEDEVSCHI, S., SURANA, S., SHETH, A.,
SUBRAMANIAN, L., AND BREWER, E. WiLDNet: Design
and Implementation of High Performance WiFi Based Long
Distance Networks. In NSDI (Apr. 2007).

[18] PENTLAND, A. S., FLETCHER, R., AND HASSON, A.
Daknet: Rethinking connectivity in developing nations.
IEEE Computer 37, 1 (Jan. 2004).

[19] ROSEN, E., A.VISHWANATHAN, AND R.CALLON. RFC
3031: Multiprotocol label switching architecture, Jan. 2001.

[20] ScoTT, K., AND BURLEIGH, S. Bundle protocol
specification. Work In Progress. Internet Draft, Apr. 2007.
draft-irtf-dtnrg-bundle-spec-09.txt.

[21] SETH, A., KROEKER, D., ZAHARIA, M., GUO, S., AND
KESHAV, S. Low-cost communication for rural internet
kiosks using mechanical backhaul. In MobiCom (2006).

[22] THE ARAVIND WIRELESS NETWORK.
http://tier.cs.berkeley.edu/wiki/Aravind.

