Observations regarding a new architecture

Kevin Fall
Intel Research, Berkeley
18-Sep-2006, Cambridge, UK
Naming

• Things: objects, services, people, roles
• Types of names
 – descriptive (associative) names – “content”
 – location-related names
• Names mapped to routable tag
• Approach using standard namespaces
 – some can be locally computed
 – general names are variable length
 – hierarchical and flat are both useful
Naming (example)

- URI structure
 - \(<namespace> : <ns-specific part>\)
 - http://www.cnn.com
 - isbn:81-7808-101-6

- Can hierarchically decompose as required
- Easily mapped to finite ID using hash
 - if flat routing supported, enough (later)
- Naturally works with anycast
Provenance & Tags

• Generally care less about what entity provided an object than what entity authored it & what it is

• Provenance/tags for objects:
 – verifiable origin and modification lineage
 – content identification
 – handling/dissemination restrictions
 • IP security labels
 • DRM
Addressing & Routing

• “Address” ~ “routing tag”
• $f(name) \rightarrow address$, f may be identity map
• Multiple routing types
 – on names (dns, email, sip?)
 – on variable-len numbers (phone network)
 – on fixed-len numbers (Internet)
• High-level routing requirements
 – operation on given graph [ie. not pure overlay]
 – adjustable using traffic engineering techniques
 – supports expressible policy
• Non-requirements
 – stretch-1 operation
 – hierarchy in addresses
 – only 1 destination address in an ADU
Current Routing Items

• Compact Routing
 – small $O(\sqrt{n})$ tables but not always stretch1
 – extended to topology independence
 – good for scale-free graphs
 – nothing in terms of dynamics

• Overlays that know about underlying graph (VRR)
 – inspired by overlays
 – operates on underlying graph
 – flat space

• Policies for routing
 – algebraic forms

• MANET routing
 – proactive & reactive
 – IP-IP encaps

• Mobile IP
Transport

• Local case: network layer optional
• Fragmentation for two reasons
 – adapting to MTU (current)
 – performance (current for TCP somewhat)
• Application chooses between
 – uncorrected / FEC / ARQ reliability path
 – network coding?
• Storage in network
 – some nodes have more reliable storage
 – can be used to, e.g., offload end node faster
Networking & Storage

• Network hidden behind storage
 – done by AFS / Coda
 – somewhat awkward if interrupted
 – awkward for streaming

• Network hidden behind procedures
 – common RPC services
 – awkward if interrupted
 – awkward for streaming

• Network should understand two types
 – streaming and object ~ ADUs ~ DTN bundles
 – objects mesh with store-and-forward

• *store and forward with support for long-term storage*
ADUs

- ADUs ~ DTN bundles
 - like DTN bundles
- Main features of DTN bundles
 - variable-length src/destination
 - origin time and useful life (time must be sync’d)
 - class of service
 - fragmentation
 - extensions
 - segregation of mutable and non-mutable headers
Security

• Authentication of provenance
 – digital signatures (e.g. IBE) [worry: keygen]
• Protection from transmission disclosure
• Management of unwanted traffic
 – assignment of traffic engineering descriptor
 – ingress filtering of TE descriptor
• Secure notion of time
Layers

• Implementation technique ~ served us well
 – with limited set of protocols
 – and easily ‘abstractable’ link layer

• Issues with layering
 – wrong abstraction (gives rise to tunnels)
 – bad cross-layer interactions
 • ATM cell loss; IP fragmentation; TCP MSS issues; content splitting