Delay-Tolerant Networking: Architecture & Applications

Kevin Fall
Intel Research, Berkeley

kfall@intel.com

http://WWW.DTNRG.ORG

Nov 9, 2004 / Princeton, NJ
Outline

– Why the Internet Architecture is not a ‘one-size-fits-all’ solution
– DTN Architecture Overview
– Applications & Recent Implementation Work
RFC1149 : A Challenged Internet

• “…encapsulation of IP datagrams in avian carriers” (i.e. birds, esp carrier pigeons)
• Delivery of datagram:
 – Printed on scroll of paper in hexadecimal
 – Paper affixed to AC by duct tape
 – On receipt, process is reversed, paper is scanned in via OCR
Implementation of RFC1149

CPIP: Carrier Pigeon
Internet Protocol

• See http://www.blug.linux.no/rfc1149/
Ping Results

Script started on Sat Apr 28 11:24:09 2001
vegard@gyversalen:~$ /sbin/ifconfig tun0
 tun0 Link encap:Point-to-Point Protocol
 inet addr:10.0.3.2 P-t-P:10.0.3.1 Mask:255.255.255.255
 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:150 Metric:1
 RX packets:1 errors:0 dropped:0 overruns:0 frame:0
 TX packets:2 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0
 RX bytes:88 (88.0 b) TX bytes:168 (168.0 b)

vegard@gyversalen:~$ ping -i 900 10.0.3.1
PING 10.0.3.1 (10.0.3.1): 56 data bytes
64 bytes from 10.0.3.1: icmp_seq=0 ttl=255 time=6165731.1 ms
64 bytes from 10.0.3.1: icmp_seq=4 ttl=255 time=3211900.8 ms
64 bytes from 10.0.3.1: icmp_seq=2 ttl=255 time=5124922.8 ms
64 bytes from 10.0.3.1: icmp_seq=1 ttl=255 time=6388671.9 ms

--- 10.0.3.1 ping statistics ---
9 packets transmitted, 4 packets received, 55% packet loss
round-trip min/avg/max = 3211900.8/5222806.6/6388671.9 ms

vegard@gyversalen:~$ exit

Script done on Sat Apr 28 14:14:28 2001
Unstated Internet Assumptions

- End-to-end RTT is not terribly large
 - A few seconds at the very most [typ < 500ms]
 - (window-based flow/congestion control works)
- Some path exists between endpoints
 - Routing usually finds single “best” existing route
 - [ECMP is an exception]
- E2E Reliability using ARQ works well
 - True for low loss rates (under 2% or so)
- Packet switching is the right abstraction
 - Internet/IP makes packet switching interoperable
Non-Internet-Like Networks

- Stochastic and periodic mobility
 - Military/tactical networks
 - Mobile routers w/disconnection (e.g. ZebraNet)
 - Spacecraft communications (LEO sats)
 - Busses, mail trucks, delivery trucks, etc. (InfoStations)

- “Exotic” links
 - Deep space [Mars: 40 min RTT; episodic connectivity]
 - Underwater [acoustics: low capacity, high error rates & latencies]
 - Sensor networks, mules
DTN challenges…

- Intermittent/Scheduled/Opportunistic Links
 - Scheduled transfers can save power and help congestion; scheduling common for esoteric links
- High Link Error Rates / Low Capacity
 - RF noise, light or acoustic interference, LPI/LPD concerns
- Very Large Delays
 - Natural prop delay could be seconds to minutes
 - If disconnected, may be (effectively) much longer
- Different Network Architectures
 - Many specialized networks won’t/can’t ever run IP
What to Do?

• Some problems surmountable using Internet/IP
 – ‘cover up’ the link problems using PEPs
 – Mostly used at “edges,” not so much for transit

• Performance Enhancing Proxies (PEPs):
 – Do “something” in the data stream causing endpoint
 (TCP/IP) systems to not notice there are problems
 – Lots of issues with transparency—security, operation
 with asymmetric routing, etc.

• Some environments never have an e2e path
 – Consider an approach tolerating disconnection, etc...
Delay-Tolerant Networking Architecture

• Goals
 – Support interoperability across ‘radically heterogeneous’ networks
 – Acceptable performance in high loss/delay/error/disconnected environments
 – Decent performance for low loss/delay/errors

• Components
 – Flexible naming scheme with *late binding*
 – Message overlay abstraction and API
 – Routing and link/contact scheduling w/CoS
 – Per-(overlay)-hop reliability and authentication
Naming

• Support ‘radical heterogeneity’ using *regions*:
 – Instance of an internet, not so radical inside a region
 – Common naming and protocol conventions

• **Endpoint Name**: ordered name pair \{R, L\}
 – \(R\): routing region [globally valid]
 – \(L\): region-specific, opaque outside region \(R\)

• **Late binding** of \(L\) permits naming flexibility:
 – \(L\) used only in destination region of interest \(R\)
 – Could be associative or location-oriented names [URN vs URL]
 – May encompass esoteric routing [e.g. diffusion]
 – Perhaps an Internet-style URI [see RFC2396]

• **To do**: make \(R, L\) compressible in transit networks
Message Overlay Abstraction

• E2E Async Message Service: “Bundles”
 – “postal-like” message delivery over regional transports with coarse-grained CoS [4 classes]
 – Options: return receipt, “traceroute”-like function, alternative reply-to field, custody transfer
 – Supportable on nearly any type of network
• Applications send/receive messages
 – “Application data units” of possibly-large size
 – May require framing above some transport protocols
 – API supports response processing long after request was sent (application re-animation)
So, is this just e-mail?

<table>
<thead>
<tr>
<th></th>
<th>naming/late binding</th>
<th>routing</th>
<th>flow control</th>
<th>multi-app</th>
<th>security</th>
<th>reliable delivery</th>
<th>priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-mail</td>
<td>Y</td>
<td>N</td>
<td>N(Y)</td>
<td>N(Y)</td>
<td>opt</td>
<td>Y</td>
<td>N(Y)</td>
</tr>
<tr>
<td>DTN</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>opt</td>
<td>opt</td>
<td>Y</td>
</tr>
</tbody>
</table>

- Many similarities to (abstract) e-mail service
- Primary difference involves routing/restart and API
- E-mail depends on an underlying layer’s routing:
 - Cannot generally move messages closer to their destinations in a partitioned network
 - In the Internet (SMTP) case, not disconnection-tolerant or efficient for long RTTs due to “chattiness”
- E-mail security authenticates only user-to-user
Example Routing Problem

Internet Region

City

Village Region

bike

1

2

3
Example Graph Abstraction

Connectivity: Village 1 – City

- **bike (data mule)**
 - intermittent high capacity
- **Geo satellite**
 - medium/low capacity
- **dial-up link**
 - low capacity

Diagram details:

- Time (days) on the x-axis
- Bandwidth on the y-axis
- Bike, satellite, and phone connections shown

Intel Berkeley Research
Routing on Dynamic Graphs

• DTN routing takes place on a time-varying topology
 – Links come and go, sometimes predictably
 – Use any/all links that can possibly help
• Scheduled, Predicted, or Unscheduled Links
 – May be direction specific [e.g. ISP dialup]
 – May learn from history to predict schedule
• Messages fragmented based on dynamics
 – **Proactive fragmentation**: optimize contact volume
 – **Reactive fragmentation**: resume where you failed
 – Both are important for high utilization of precious link resources
The DTN Routing Problem

- **Inputs**: topology (multi)graph, vertex buffer limits, contact set, message demand matrix (w/priorities)
- An **edge** is a possible opportunity to communicate:
 - One-way: \((S, D, c(t), d(t))\)
 - \((S, D)\): source/destination ordered pair of contact
 - \(c(t)\): capacity (rate); \(d(t)\): delay
 - A **Contact** is when \(c(t) > 0\) for some period \([i_k, i_{k+1}]\)
- Vertices have buffer limits; edges in graph if ever in any contact, multigraph for multiple physical connections
- **Problem**: optimize some metric of delivery on this structure
 - Sub-question: what metric to optimize?
Knowledge vs Performance

S. Jain (UW): SIGCOMM 2004

Conceptual Performance

Local knowledge

Global knowledge

Algorithm

MED

FC

Contacts

ED

EDLQ

EDAQ

Contacts + Local Queuing

Contacts + Global Queuing

Contacts + Global Queuing + Traffic Demand

Use of Knowledge Oracles
‘DTN2’ Implementation

- Tcl Console / Config
- Fragmentation Manager
- Bundle Store
- Registration Store
- Bundle Forwarder
- Application IPC
- Management Interface
- Contact Manager
- TCP
- UDP
- File
- ...
Experiment Setup

• Compare robustness to interruption / link errors
• Approaches compared
 – End-to-end TCP (kernel routing)
 – Proxied (TCP ‘plug proxies’)
 – Store-and-forward (Sendmail, no ckpoint/restart)
 – DTN (store-and-forward with restart)
• Link up/down patterns: aligned, shifted, sequential, random
No disruptions: DTN does well for small msgs, modest overhead overall
Interruption Tolerance

Up/down 1m/3min; 40kb messages; shift: 10s

Zero throughput for e2e
Conclusions

• DTN foundational concepts appear to have wide applicability
• DTN Routing is a rich and challenging problem
• Reference implementation can be tricky
• Early performance results suggest our approach to disruption tolerance is effective
Status

• IETF/IRTF DTNRG formed end of 2002
 – See http://www.dtnrg.org
• DTN1 Agent Source code released 3/2003
• SIGCOMM Papers: 2003 [arch], 2004 [routing]
• Several other documents (currently ID’s):
 – DTNRG Architecture document
 – Bundle specification
 – Application of DTN in the IPN
• Basis for new DARPA DTN program
• Part of NSF ‘ICT4B’ Project (with UCB)
On to an application…
ICT for Billions (ICT4B)

• Information and Communication Technologies for Developing Regions of the World

• Networking focus: intermittent networking
 – Mission-specific architecture and API
 – Multiple layers of network intermittency
ICT4B Application Areas

• E-Government
 – Forms, status updates, certifications
• Health
 – Early screening
• Trade
 – Price dissemination, market making
• Education
 – Various topics: health, agriculture, microfinance, etc.
• Alerts / News / Weather
• General communication
ICT4B Technology Areas

• Task-Specific Devices
 – Hand-held with speech recognition
 – Local wireless
 – Sensors
 – Uses: Medical, data entry, information, etc.

• Intermittent Networking
 – DTN forms the underlying networking technology
 – Capable of supporting async messaging over most any comms technology

• Distributed System Architecture
 – Back-end services in data center (databases, trading system, etc.)
 – Village-level kiosks (cache, I/O capability with devices, printer)

• Speech Recognition
 – Speaker-independent small-vocabulary approach
 – (currently taking samples in Tamil)

• Very Low Cost Displays
 – Using ink-jet printing approach
Some of The Team...[7/2004]
MSSRF (Villianur)...[7/2004]
MSSRF (Kizhur?)...[7/2004]
MSSRF (Veerampattinam)...[7/2004]
ICT4B Project Status

• ICT4B NSF ITR funded 10/2003 (5yr)
• DTN forwarding layer and early apps being tested (code released 3/2003)
• Fellow travelers: HP Labs India, IIT Bombay/Kanpur/Madras, Univ. of Washington, MITRE, DARPA, NSF, CMU, UCLA, JPL, U Waterloo, MCI
Acknowledgements

- **DTN/ICT4B People:**
 - Eric Brewer, Mike Demmer, Rabin Patra (UCB)
 - Bob Durst, Keith Scott (MITRE)
 - Kevin Fall, Melissa Ho (Intel Research Berkeley)
 - Sushant Jain (UW Intern)
 - S. Keshav (U Waterloo)
 - Ting Liu (Princeton)

- **Other DTN (IPN) People:**
 - Vint Cerf (MCI)
 - Scott Burleigh, Adrian Hooke (NASA/JPL)
 - Forrest Warthman (Warththman)
 - Stephen Farrell (Trinity College, Ireland)
 - The *dtn-interest* mailing list