A Delay-Tolerant Network Architecture for Challenged Internets

Kevin Fall
Intel Research
Berkeley, CA
kfall@intel.com
http://www.intel-research.net

Aug 26, 2003 – SIGCOMM
Karlsruhe, Germany
Unstated Internet Assumptions

• Some path exists between endpoints
 – Routing finds (single) “best” existing route
 • [some exceptions…e.g. ECMP]

• End-to-end RTT is not terribly large
 – A few seconds at the very most (usually much less)
 – →window-based flow/congestion control works

• E2E reliability using ARQ works well (enough)
 – True for low loss rates (under 2% or so)

• Packets are the right abstraction
 – Internet (IP) makes packet switching interoperable
 – Routers don’t modify packets (much) when forwarding
New challenges…

• Very Large E2E Delays
 – Natural prop delay could be seconds to minutes
 – If disconnected, queuing times may be much longer

• Intermittent and Scheduled Links
 – Disconnection may not be due to failure (e.g. LEO sats and scheduling links down for power management)
 – Retransmission may be very expensive
 • Unauthorized access could be a big problem

• ‘Radically’ Heterogeneous Network Architectures
 – Many specialized networks won’t/can’t ever run IP
Delay-Tolerant Architecture

• Goals
 – Interoperability across network architectures
 – Reasonable performance in high loss/delay and frequently-disconnected environments

• Components
 – Flexible naming scheme with late binding
 – Message-based overlay abstraction (+API)
 – Routing and link/contact scheduling w/CoS
 – Per-(overlay)-hop authentication and reliability
Naming

• Names ("tuples") are of the URI form:
 – `bundles://<region-name>/<URI>`
 – Write this more simply as `(R,L)`
• Separates region (routing) from admin name
 – `R`: routing region [globally valid]
 – `L`: region-specific format, opaque outside region `R`
• Late binding of `L` permits naming flexibility
 – Routing based only on region portion
 – `L` could encode esoteric naming scheme [e.g. diffusion]
 • Could be object names, addresses, queries, etc.
 – Borrows from late binding in URLs and URIs
Example with Sensor Networks

Data "mule"

Home Base
Data Center (and Internet)
Reliable Message Overlay

• End-to-End Reliable Message Service: *bundles*
 – “postal-like” message delivery over regional transports
 – *Optional*: enhanced reliability, class of service, return receipt, and “traceroute”-like functions with 3rd-party “report-to” indicator

• Enhanced Reliability via *Custody Transfer*
 – *Current Custodian* owns reliable-delivery promise
 – Bundles transferred between custodians toward destination in database-style transaction
 – Sender may free resources upon successful custody transfer (destination considered an eligible custodian)
Routing in a DTN

• Scheduled (known) / Unscheduled (opportunistic)
 – S/U characterization may be direction-specific
 • Consider the two ends of a user/ISP link

• Formulation as an LP (ideal case):
 – Minimize the evacuation time
 – Constraints on time, buffers, messages, priority
 – Several non-ideal options under investigation

• Predictability continuum:
 – Intermediate “predicted” category may evolve as a result of statistical estimation
 – Concept of entropy of a route [?]
Flow and Congestion Control

- FC is hop-by-hop in the overlay
 - Takes care of CC implicitly
 - Coarse timescale (e.g. ‘filesystem full’)
- FC for custody transfer not so easy:
 - Don’t want custody-traffic awaiting a contact to block forwarding of traffic to an available contact
 - Options: stop taking custody, separately queue custody and non-custody traffic, use destination queues, timeout
- Regional transport protocols may support FC
 - How to use built-in FC to effect bundle-layer FC?
Implementation and API

• DTN agent separated from client library
 – Both are RPC-based client and server
 – Either can be interrupted and restarted

• Client <---> agent association via register/callback
 – Registrations [and delivery actions] can be persistent
 – Can poll from last point on re-association

• Agent implements the ‘heavy lifting’:
 – DB for app (de)registrations, bundle send/recv/demux
 – Name resolution in destination region as required
 – Basic routing, scheduling and storage management functions
 – Custody transfer
 – Authentication and access control (if requested)
Status

- DTN is a message-oriented overlay for:
 - Internetworking in frequently-disconnected networks
 - Interconnecting ‘radically heterogeneous’ networks
- It evolved from the IPN Architecture
- There is a prototype implementation
 - ~20K lines of C code and some JAVA
 - Demonstrated as basis for query processing in disconnected sensor network
- There is an IRTF research group (DTNRG)
People

• People (designers and implementers):
 – Bob Durst, Keith Scott (MITRE)
 – Scott Burleigh (NASA/JPL)
 – (me)

• More people (vision, design, commentary):
 – Vint Cerf (MCI)
 – Adrian Hooke (NASA/JPL)
 – Juan Alonso (SICS)
 – Howard Weiss (SPARTA)

• The *dtn-interest* list and workshop participants
For more Information

• Delay Tolerant Networking Research Group
 – http://www.dtnrg.org

• Internet Research Task Force
 – http://www.irtf.org

• DTN Mailing list
 – dtn-interest@mailman.dtnrg.org

• Interplanetary Internet SIG (ISOC group)
 – http://www.ipnsig.org
Thank you…

www.dtnrg.org
So, is this all just e-mail?

<table>
<thead>
<tr>
<th></th>
<th>naming/late binding</th>
<th>routing-control</th>
<th>flow-app</th>
<th>multi-security</th>
<th>reliable-delivery</th>
<th>priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-mail</td>
<td>Y</td>
<td>N</td>
<td>sort-of</td>
<td>sort-of</td>
<td>opt</td>
<td>Y</td>
</tr>
<tr>
<td>DTN</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>opt</td>
<td>opt</td>
</tr>
</tbody>
</table>

- Many similarities to e-mail service interface
- Primary difference involves routing
- E-mail depends on an underlying layer’s routing:
 - Cannot generally move messages closer to their destinations in a partitioned network
 - In the Internet (SMTP) case, not delay tolerant or efficient for long RTTs due to “chattiness”
- E-mail security authenticates only user-to-user
Bundle Agent

<table>
<thead>
<tr>
<th>File Store</th>
<th>sockets</th>
<th>Sensor Network Protocols</th>
<th>File Store</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>802.3</td>
<td></td>
<td>802.11</td>
</tr>
</tbody>
</table>

Libdtn (RPC)

TCP Convergence Layer
SensorNet Convergence Layer
Database Support (sleepycat)

Bundle Agent

Bundle App

Forwarding Bundle Agent