Domain Name System

- Internet (IP) only understands addresses
- Naming easier for humans (e.g. files)
- Need a way to map names to numbers
- DNS (Domain Name System):
 - hierarchical distributed database
 - Internet application layer
 - see RFC 1034 and 1035

Naming

- Important theme in systems engineering
 - files in a file system
 - processes in operating system
 - web pages
 - printers and other services
- Name and location decoupling

Decoupling

- DNS provides a level of indirection between name and its location (solves any CS problem!)
- How to do this?
 - Flat vs hierarchical name space
 - Distributed vs centralized approach

Original Name System

- Flat name space:
 - simple (string, address) pairs
 - manual coordination
 - examples: ucbvax, sdcvax, sri-nic
- Centralized Management
 - HOSTS.TXT file
 - single point of failure/update

Scaling Problems

- Name space overlap
 - had to coordinate with other users of name space to avoid overlap
 - greater management time
- Inconsistencies and poor performance
 - centralized updates
 - single point of failure
 - congestion at central point

DNS Approach
Hierarchical, nested domain naming

Distributed, recursive servers

Basic ideas:
- Distribute name/address database across network hierarchically
- Implement query/response protocol
- Use caching heavily

Naming Hierarchy

Naming Conventions

- “Top-Level Domains” (TLD's)
- Non-geographic
 - .COM, .NET, .ORG, .INT, .EDU, .MIL, .GOV
- Geographic
 - Based on ISO3166 country codes
 - .JP, .AU, .UK, .DE, .US, ...
- The special “.ARPA” (reverse) domain

Naming Example

 - Host: www, subdomain cs, domain: Berkeley.EDU
 - Case insensitive
 - A “fully qualified” domain name (FQDN)
- Hierarchy is right-to-left with “.” delimiter
- Not necessarily tied to network topology/geography

DNS Components

- (Mockapetris & Dunlap, 1983, pub 1988)
- Zones contain resource records (RRs)
- Name server(s) manage each zone
- Client resolvers query name servers

Zones

- Complete description of a contiguous section of the total name space, plus some
 linkage info to other contiguous sections (separately administered DNS subtrees)
- Associated maintenance (>1 server)
- Zone transfers between redundant servers

Caching

- Servers and some clients cache data retrieved
- Resource records contain time-to-live (TTL), set by provider
- Higher TTL: less traffic, stale info
- Lower TTL: more traffic, current info

DNS Resource Records

- Components: owner (which domain), class (IN is only significant one), type, TTL
 (time it is valid), record data
- **Types.**
 - A, CNAME, HINFO, MX, NS, SOA, PTR
- **Record Data**
 - variable length, specific to type

15 **Address-related Types**
- **A** type (internet address(es))
 www.AAD A 128.32.51.214
- **CNAME** type (alias(es))
- **PTR** type (used for reverse queries)
 214.51 PTR www.AAD.Berkeley.EDU

16 **Authority Record**
- **SOA** type (start of authority)
 - current serial number of zone data
 - refresh, retry, and expire info
 Berkeley.EDU SOA ns1.Berkeley.EDU dns-roadkill.NAK.Berkeley.EDU
 90001481 ; serial version
 3600 ; refresh period
 900 ; retry this often
 3600000 ; expiration period
 86400 ; minimum TTL

17 **Name Server Records**
- **NS** type (name server)
 - indicates authoritative name servers
 - used to construct the hierarchy
 Berkeley.EDU NS vangogh.CS.Berkeley.EDU
 Berkeley.EDU NS cgl.UCSF.EDU
 CS NS vangogh.CS.Berkeley.EDU
 CS NS nexus.EECS.Berkeley.EDU

18 **Other Records**
- **MX** type (mail exchanger)
 - indicates e-mail relay host and its preference
 Berkeley.EDU. MX 5 mailhost.Berkeley.EDU
- **HINFO** type (host info)
 - indicates OS or type of host
 UCSD.EDU. HINFO Sun Unix

19 **An Example (nslookup):**

20 **Locally-satisfied DNS query:**
 - User in domain “foo.com” asks for “bar”

21 **Globally-satisfied DNS query:**
 - User in domain “foo.com” asks for “blah baz.com”
Reverse Queries

- Forward queries use domain name
- How to do reverse (addr-to-name) queries?
 - Addresses left-to-right, names right-to-left
 - Idea: REVERSE query
- Reverse network number, add ".IN-ADDR.ARPA" and perform PTR type query

Reverse Query Example

- Find the name of the host with address "208.212.172.33"
- This is a class "C" address, network 208.212.172.0
- So, look for the string "33.172.212.208.IN-ADDR.ARPA":

Bootstrapping

- How does local host locate name server?
 - Set up during host configuration
- How do servers locate root servers?
 - Set up during DNS configuration
 - 13 root servers ([a-m].root-servers.net)
 - root servers do not provide recursion

Negative Caching

- Caching works well for correct queries
- With many wrong queries, scaling is hurt:
 - cache negative queries also!
 - Covers both nonexistent domain names and nonexistent resource records
- See RFC 2308
 - Set up during host configuration

DNS Protocol

- DNS is an Application
- Uses both TCP and UDP for transport
 - UDP: used for most queries
 - TCP: used for zone transfers, and when UDP results indicated message was too big
- Use of UDP requires clients to implement their own reliability

DNS Lessons

- Naming was first show-stopping scaling problem
- Scaling problem addressed with:
 - caching
 - decentralization
 - hierarchy