
1 EECS 122, Lecture 6EECS 122, Lecture 6
Kevin FallKevin Fall
kfall@kfall@cscs..berkeleyberkeley..eduedu

2 ErrorsErrors
••Errors occur due to noise or interference on a communication channelErrors occur due to noise or interference on a communication channel
••Error detection and correctionError detection and correction

–– error detecting (correcting) codeserror detecting (correcting) codes
–– retransmission (ARQ)retransmission (ARQ)

••Usually, codes are used for bit errors, ARQ is used for packetsUsually, codes are used for bit errors, ARQ is used for packets
3 Channel CodingChannel Coding

••Codes to correct for errors in channel (versus source coding--compression)Codes to correct for errors in channel (versus source coding--compression)
••Benefits due to these phenomenaBenefits due to these phenomena

–– RedundancyRedundancy
–– Noise averaging (over long time spans)Noise averaging (over long time spans)

••Types of codesTypes of codes
–– block codes, tree codesblock codes, tree codes

4 Block and Tree CodesBlock and Tree Codes
••Block codesBlock codes

–– k input bits -> n output bits; an “(n,k) code”k input bits -> n output bits; an “(n,k) code”
–– memorylessmemoryless process, simple mapping process, simple mapping
–– code rate R = k/n [code rate R = k/n [typtyp 0.25< R 0.875] 0.25< R 0.875]

••Tree codes (Tree codes (inclincl. . convolutionalconvolutional codes) codes)
–– k input, n output, n is f(v+k input bits)k input, n output, n is f(v+k input bits)
–– v > 0 implies process has memoryv > 0 implies process has memory

5 Where are Codes Used?Where are Codes Used?
••Used on storage media (magnetic tape, CDs, etc)Used on storage media (magnetic tape, CDs, etc)
••Common examplesCommon examples

–– Parity bitsParity bits
–– Cyclic redundancy check (CRC)Cyclic redundancy check (CRC)
–– Internet checksumInternet checksum

••(we will look briefly at block codes)(we will look briefly at block codes)
6 BasicsBasics

••Hamming weight is # of 1’s in a wordHamming weight is # of 1’s in a word
••Hamming distance (d) is # of differencesHamming distance (d) is # of differences

–– 1111010101, 1101, 11101001 have d = 01 have d = 22
–– (also the (also the HamHam. weight of their XOR!). weight of their XOR!)

••At least some errors can be detected or corrected if, for a code with HD d:At least some errors can be detected or corrected if, for a code with HD d:
d >= (# errors that can be detected) + (# errors that can be corrected) + 1d >= (# errors that can be detected) + (# errors that can be corrected) + 1

7 Basics 2Basics 2
••A pattern of t or fewer errors can be detected A pattern of t or fewer errors can be detected andand corrected if: corrected if:

••The minimum distance of the code is the smallest d of any The minimum distance of the code is the smallest d of any codewordcodeword pairs pairs
••Want codes with as large as possible minimum distanceWant codes with as large as possible minimum distance

8 Simple ParitySimple Parity
••Starting with n-1 information bits, construct the nth bit so that the HammingStarting with n-1 information bits, construct the nth bit so that the Hamming

weight is even (even parity)weight is even (even parity)
••Will detect an odd number of bit errorsWill detect an odd number of bit errors
••Does not handle even # of errorsDoes not handle even # of errors
••Does not correctDoes not correct

9 Parity Check CodeParity Check Code
••Consider a Consider a codeword codeword to be of form:to be of form:

–– (symmetric form…info comes first)(symmetric form…info comes first)
–– then for (n,k) block code, n = k + rthen for (n,k) block code, n = k + r

••We can think of selecting a We can think of selecting a codeword codeword cc as a matrix multiplication (w/mod-2 +): as a matrix multiplication (w/mod-2 +):
cc = = mGmG
••mm is message, is message, GG is is generator matrixgenerator matrix

10 Parity GenerationParity Generation
••GG is a k x n (k rows) matrix: is a k x n (k rows) matrix:

11 The Z MatrixThe Z Matrix
••entries in Z are binary numbers specified to give the desired entries in Z are binary numbers specified to give the desired codewords codewords in thein the

(n,k) block code [Hamming is 1 example](n,k) block code [Hamming is 1 example]
••Want this relationship:Want this relationship:

12 Parity Generation ExampleParity Generation Example
••c = c = mGmG for (7,4) systematic code word:for (7,4) systematic code word:

13 Parity CheckingParity Checking
••HH is a (n-k) x n matrix: is a (n-k) x n matrix:

14 Hamming Codes [BSTJ-4/50]Hamming Codes [BSTJ-4/50]
••Special block codes with d = 3Special block codes with d = 3
••Because d >= 2t + 1, t = 1 (Single EC)Because d >= 2t + 1, t = 1 (Single EC)
••Requires:Requires:
••where integer m >= 3where integer m >= 3
••So, allowable codes include (7,4), (15,11), (31, 26), (63, 57), (127, 120)So, allowable codes include (7,4), (15,11), (31, 26), (63, 57), (127, 120)

15 Cyclic Redundancy Check (CRC)Cyclic Redundancy Check (CRC)
••Block based error detection commonly used in link-layer networksBlock based error detection commonly used in link-layer networks
••Idea: Given a k-bit message, generate an n-bit frame check sequence (FCS) soIdea: Given a k-bit message, generate an n-bit frame check sequence (FCS) so

that a combined k+n bit frame is evenly divisible by some pre-defined numberthat a combined k+n bit frame is evenly divisible by some pre-defined number
••On receipt, no remainder means no errorOn receipt, no remainder means no error

16 Messages as PolynomialsMessages as Polynomials

••Consider n bit message as corresponding to an (n-1) degree polynomial with theConsider n bit message as corresponding to an (n-1) degree polynomial with the
message bits as coefficientsmessage bits as coefficients

••Example:Example:
–– m = 10011010m = 10011010

17 What to SendWhat to Send
••Let C(x) be our divisor polynomialLet C(x) be our divisor polynomial

–– example: (degree 3)example: (degree 3)
••So, first scale M(x) by multiplying by degree of C(x):So, first scale M(x) by multiplying by degree of C(x):
••Now, compute remainder of M(x)/C(x)Now, compute remainder of M(x)/C(x)

18 Polynomial DivisionPolynomial Division
19 Remainder CalculationRemainder Calculation

••So, we see that 101 is the remainderSo, we see that 101 is the remainder
••Thus, M(x) - 101 would be evenly divisible by C(s)Thus, M(x) - 101 would be evenly divisible by C(s)
••So, just subtract off 101 (remember, we pre-multiplied leaving room for it)So, just subtract off 101 (remember, we pre-multiplied leaving room for it)
••Then, new message is 10011010101Then, new message is 10011010101

20 Where did C(x) Come From?Where did C(x) Come From?
••C(x) is standardized to be small but typically produce remainders. Detects:C(x) is standardized to be small but typically produce remainders. Detects:

–– all single bit errorsall single bit errors
–– all double-bit errors if C(x) has a factor with at least 3 termsall double-bit errors if C(x) has a factor with at least 3 terms
–– any odd number of errors, if (x+1) divides C(x)any odd number of errors, if (x+1) divides C(x)
–– any burst error of length < any burst error of length < lenlen of FCS of FCS
–– most large burst errorsmost large burst errors

21 Standard CRC PolynomialsStandard CRC Polynomials
••CRC-8: 100000111CRC-8: 100000111
••CRC-10: 11000110011CRC-10: 11000110011
••CRC-12: 1100000001111 (text is wrong)CRC-12: 1100000001111 (text is wrong)
••CRC-16: 11000000000000101CRC-16: 11000000000000101
••CRC-CCITT: 10001000000100001CRC-CCITT: 10001000000100001
••CRC-32: 100000100110000010001110110110111CRC-32: 100000100110000010001110110110111

22 The Internet ChecksumThe Internet Checksum
••Used in IP, ICMP, TCP, UDP, …Used in IP, ICMP, TCP, UDP, …
••AlgAlg: 1’s complement of the 1’s complement sum of data interpreted 16 bits at a: 1’s complement of the 1’s complement sum of data interpreted 16 bits at a

time. In 1’s comp., two zeros!time. In 1’s comp., two zeros!
••1’s complement addition is “end-round-carry” addition. Why?1’s complement addition is “end-round-carry” addition. Why?

–– 2’s complement carry is a zero-crossing; account for -0 by adding one2’s complement carry is a zero-crossing; account for -0 by adding one

23 Internet Checksum ExampleInternet Checksum Example
••Message: e3 4f 23 96 44 27 99 f3Message: e3 4f 23 96 44 27 99 f3
••2’s comp sum is: 1e4ff2’s comp sum is: 1e4ff
••1’s comp sum is: e4ff + 1 = e5001’s comp sum is: e4ff + 1 = e500

••So, Internet So, Internet cksum cksum is 1affis 1aff
••Note that message + Note that message + cksum cksum = = ffffffff
••Thus, Thus, cksumcksum((msgmsg++cksumcksum) = 0000) = 0000

24 Interesting Properties (are these good for a checksum?)Interesting Properties (are these good for a checksum?)
••<{0001..ffff}, +> forms<{0001..ffff}, +> forms Abelian Abelian Group: Group:

–– for all X,Y (X+Y) is in {0001…for all X,Y (X+Y) is in {0001…ffffffff} [closure]} [closure]
–– A + (B + C) = (A + B) + C [A + (B + C) = (A + B) + C [assocassoc]]
–– e + X = X + e = X (for all X), e = e + X = X + e = X (for all X), e = ffff ffff [[identident]]
–– for all X, X’ exists where X + X’ = e [inverse]for all X, X’ exists where X + X’ = e [inverse]
–– for all X,Y, X+Y = Y+X [for all X,Y, X+Y = Y+X [commutativitycommutativity]]
–– not closed under complement!not closed under complement!
–– only trivial payload results in only trivial payload results in ffff cksumffff cksum

25 Other CharacteristicsOther Characteristics
••easy to compute and check in softwareeasy to compute and check in software
••amenable to incremental updatesamenable to incremental updates
••not as strong as CRCnot as strong as CRC

–– assume any bit error results in uniform assume any bit error results in uniform csum csum value on [0000..value on [0000..fffefffe], then], then
ProbProb((cksumvalidcksumvalid|error) = 1 in 65536, about 3x10^-5…..ok if errors are rare|error) = 1 in 65536, about 3x10^-5…..ok if errors are rare

••A + B = B + A (A + B = B + A (commutativitycommutativity))
••Excluding 0000, forms Excluding 0000, forms Abelian Abelian GroupGroup
••+0 (0000) and -0 (+0 (0000) and -0 (ffffffff))

26 Incremental UpdatesIncremental Updates
••Possible to determine new Possible to determine new cksum cksum without touching all data…only need sum ofwithout touching all data…only need sum of

areas being changed (from and to)areas being changed (from and to)
••Why useful? [for small changes]Why useful? [for small changes]

–– Network Address Translation (NAT)Network Address Translation (NAT)
–– IP forwarding (TTL decrement)IP forwarding (TTL decrement)

