EECS 122, Lecture 6

Kevin Fall
kfall@cs.berkeley.edu

Errors
« Errors occur due to noise or interference on a communication channel

= Error detection and correction
— error detecting (correcting) codes
— retransmission (ARQ)

=« Usually, codes are used for bit errors, ARQ is used for packets

Channel Coding
= Codes to correct for errors in channel (versus source coding--compression)
= Benefits due to these phenomena

— Redundancy

— Noise averaging (over long time spans)
= Types of codes

— block codes, tree codes

Block and Tree Codes
= Block codes
—k input bits -> n output bits; an “(n,k) code™”
— memoryless process, simple mapping
—code rate R = k/n [typ 0.25< R 0.875]
= Tree codes (incl. convolutional codes)
—k input, n output, n is f(v+k input bits)
—V > 0 implies process has memory

Where are Codes Used?

=« Used on storage media (magnetic tape, CDs, etc)
«Common examples

— Parity bits

— Cyclic redundancy check (CRC)

— Internet checksum
= (we will look briefly at block codes)

Basics
< Hamming weight is # of 13 in a word

= Hamming distance (d) is # of differences
—110101, 111001 have d = 2
— (also the Ham. weight of their XOR!)

« At least some errors can be detected or corrected if, for a code with HD d:
d >= (# errors that can be detected) + (# errors that can be corrected) + 1

Basics 2

« A pattern of t or fewer errors can be detected and corrected if:

10 (2]

11 ()

12 (3]

13 (3]

14 (3]

15 (]

<« 1Lne rmurnrmurn aistdrice ol uie coue Is uUie sirdiest u ol ally coueworu pais
= Want codes with as large as possible minimum distance

Simple Parity

= Starting with n-1 information bits, construct the nth bit so that the Hamming
weight is even (even parity)

= Will detect an odd number of bit errors

= Does not handle even # of errors

= Does not correct

Parity Check Code

« Consider a codeword to be of form:

— (symmetric form...info comes first)

—then for (n,k) block code, n =k +r
= We can think of selecting a codeword ¢ as a matrix multiplication (w/mod-2 +):
c=mG
=m is message, G is generator matrix

Parity Generation
=G is a k x n (k rows) matrix:

The Z Matrix

=entries in Z are binary numbers specified to give the desired codewords in the
(n,k) block code [Hamming is 1 example]

= Want this relationship:

Parity Generation Example
«c = mG for (7,4) systematic code word:

Parity Checking

«H is a (n-k) x n matrix:

Hamming Codes [BSTJ-4/50]

= Special block codes with d = 3

«Because d >= 2t + 1, t = 1 (Single EC)

= Requires:

=where integer m >= 3

= S0, allowable codes include (7,4), (15,11), (31, 26), (63, 57), (127, 120)

Cyclic Redundancy Check (CRC)

= Block based error detection commonly used in link-layer networks

= |ldea: Given a k-bit message, generate an n-bit frame check sequence (FCS) so
that a combined k+n bit frame is evenly divisible by some pre-defined number

= On receipt, no remainder means no error

17 (5]

18 (2]
19 (]

20 (]

21 ()

22 (]

23 (]

<« LOIISIUET 11 DI messaye ds Corresporiaing w airl (r-1) uegree polyrioriial witl uie

message bits as coefficients

=« Example:
—m = 10011010

What to Send
= Let C(x) be our divisor polynomial
— example: (degree 3)
= So, first scale M(x) by multiplying by degree of C(x):
=« Now, compute remainder of M(x)/C(x)

Polynomial Division

Remainder Calculation

=« S0, we see that 101 is the remainder

=« Thus, M(x) - 101 would be evenly divisible by C(s)

= So, just subtract off 101 (remember, we pre-multiplied leaving room for it)
= Then, new message is 10011010101

Where did C(x) Come From?

=« C(x) is standardized to be small but typically produce remainders. Detects:
— all single bit errors
— all double-bit errors if C(x) has a factor with at least 3 terms
— any odd number of errors, if (x+1) divides C(x)
—any burst error of length < len of FCS
— most large burst errors

Standard CRC Polynomials

= CRC-8: 100000111

«CRC-10: 11000110011

< CRC-12: 1100000001111 (text is wrong)

= CRC-16: 11000000000000101

«CRC-CCITT: 10001000000100001

< CRC-32: 100000100110000010001110110110111

The Internet Checksum
«Used in IP, ICMP, TCP, UDP, ...

= Alg: 13 complement of the 13 complement sum of data interpreted 16 bits at a

time. In 13 comp., two zeros!
=13 complement addition is “end-round-carry”’addition. Why?
— 23 complement carry is a zero-crossing; account for -0 by adding one
Internet Checksum Example
= Message: e3 4f 23 96 44 27 99 f3
=23 comp sum is: le4ff

24 (]

25 (]

26 (]

« 50, Inwernet CKSUIr IS 1altl
= Note that message + cksum = ffff
= Thus, cksum(msg+cksum) = 0000

Interesting Properties (are these good for a checksum?)
« <{0001..ffff}, +> forms Abelian Group:

—for all X,Y (X+Y) is in {0001...ffff} [closure]

—A+ (B +C)=(A+B)+ C [assoc]

—e + X=X+ e =X (for all X), e = ffff [ident]

—for all X, X~”exists where X + X”= e [inverse]

—for all X,Y, X+Y = Y+X [commutativity]

—not closed under complement!

—only trivial payload results in ffff cksum

Other Characteristics
= easy to compute and check in software
«amenable to incremental updates

= not as strong as CRC

—assume any bit error results in uniform csum value on [0000..fffe], then
Prob(cksumvalid|error) = 1 in 65536, about 3x10/-5.....0k if errors are rare

<A + B =B + A (commutativity)
= Excluding 0000, forms Abelian Group
< +0 (0000) and -0 (ffff)

Incremental Updates
= Possible to determine new cksum without touching all data...only need sum of
areas being changed (from and to)

= Why useful? [for small changes]
— Network Address Translation (NAT)
— IP forwarding (TTL decrement)

