EECS 122, Lecture 8

Kevin Fall
kfall@cs.berkeley.edu

Bridges
= Bridges interconnect network segments at the link layer (layer 2)

=« Handle any layer 3 protocol (incl. non-routable ones); some can interconnect
different media

= Mostly for LANs, also used in WANs (2 “half bridges””on ends of pt-to-pt links
Extended LANs

= Extending (interconnecting) multiple LANs. Appears as single LAN to layer 3.
= Essentially accepts and forwards all frames
= Benefits:

— extend number of stations

—extend size

— limit interfering traffic

The “ho-frills*’Bridge
= Interconnect 2 or more LAN segments

= Listens in promiscuous mode, buffers packets and transmits them on other
interfaces when able

=« On average, still cannot exceed link bandwidth
— bridge copies all traffic
—small bursts accommodated in buffers

The “fearning’’Bridge

= Bridges “tearn’’which interfaces reach which end stations
— could do this “by hand’; but a hassle
— best if this happens transparently

= Learn by watching source addresses in frames

— senders usually use their own addresses
— (note that bridges don )

Learning Strategy
= Listen promiscuously for all traffic
= Store (src addr, port) tuple in “Station cache”’for each new sender observed

= For each received frame:

— try to match frame dest to cache src entry

— not there->send on all interfaces except rcv

—is there->send on indicated, or filter if same as rcv interface
= Age cache entries

Example



8 (2

10 (=)

11 (3]

12 (3]

13 (3]

14 ()

15 ()

16 (2]

17 (2]

18 (2]

19 (3]

20 (2]

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example



21 (&)

22 (3]

23 (&)

24 (2]

25 ()

26 (=)

27 (&)

28 (2]

29 ()

30 (5]

31 (5]

32 (3]

33 (3]

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example



34 (3]

35 (3]

36 (3]

37 (5]

38 (3]
39 ]

40 (]

41 (]

42 ]

43 ]

Example

Example

Example

Example

Example

Ouch... Loops Hurt

=« With redundant paths, bridges can loop traffic
— can happen forever (example)
— with more than 2, can cascade

= Cascade
— each bridge with N interfaces may produce up to N-2 new copies!

Loop Avoidance

= Consider LAN a graph G = (E, V), with LANs as vertices, and bridges as edges
[well, sort of... see footnote p.212]

= Spanning Trees:

— A spanning tree of an undirected, connected graph G is a subgraph which is both a tree
and contains all vertices in G

— Thus, the ST will throw out some edges and be cycle-free

Spanning Tree

= Purpose will be to provide a single path to reach each network
= Generally, graphs have many STs (even several MST 3...CS 170)
= Must be a distributed algorithm

= Can result in some bridges not forwarding at all!

Spanning Tree Computation

= Each bridge will decide over which ports it will forward frames
— bridges have unique addresses per port
— ports are also numbered by each bridge
— bridges have a single unique identifier (e.g. the lowest address)

Computation Outline
= Elect single bridge as root
= Calculate distance from each bridge to root bridge



44 (7]

45 (7]

46 (]

47 (]

48 (]

49 (]

50 (3]

= For each network, elect the bridge nearest the root to forward frames from that
LAN to the root

= Choose a port on which to forward toward root (the root port)
= Select which ports are on the ST

Configuration Messages

= Root election and ST formation are accomplished by configuration messages
— messages sent to “all bridges””multicast address, using bridge 3 src MAC address
— Contents: Root ID, Bridge ID, Cost, [age]
= Root ID: current assumed root ID
= Bridge ID: sending bridge 3 ID
« Cost: cost of best path to root from sender
— messages are not forwarded between LANs

Election 1
= Bridges initially assume they are the root
—uses its own ID as root, with zero cost
= Bridges save “best’’configs they hear on each port (or its own):
—C1 > C2if root(C1) < root(C2), otherwise
—C1 > C2if cost(C1) < cost(C2), otherwise
—C1 > C2 if bridgelD(C1) < bridgelD(C2)
= Cost is # hops to root

Election 2

= Upon receiving “better’’config message, bridge stops sending its own config
messages (but continues to forward others*with a cost incremented by 1)

= Once stability is reached, only one bridge on each LAN (the designated bridge) is
sending config messages on that LAN

Calculating Root, Cost, and Port
= global root is MIN of local bridge ID and MIN of all received root IDs
= Distance to root will be smallest cost to global root plus one

= Root port is port on which message containing minimum cost to global root was
received

Calculating Designated Bridge

= Once root, cost, and port are known, a bridge knows what its own config
messages would contain

= It will transmit its own config messages on ports where it is “best™”

Choosing Ports on the ST

= Put these ports in ST:
—root port
—all ports for which bridge is the designated bridge for the LAN

= Selected ports put into “forwarding’’state (bridge will forward frames to/from)
= Other ports are “blocked’”(no data, but configuration messages are processed)

Example [Perlman, p 58]



51 (5]
52 ()
53 (3]
54 (3]
55 (]

56 ]

57 (]

58 (]

59 (]

60 (]

Example (chooses 41 as root)

Example (becomes designated bridge for 1,2)
Example (becomes designated bridge for 1,2)
Example (root bridge 15)

Station Cache

= bridges learn and cache locations of stations

= stations may be moved, so bridges should “forget’’about them
«--> use a time-out on station cache info

= not so easy to choose a suitable value

Station Cache Timeout
= Too large:

— traffic destined to moved node will be lost
=« Too short:

— un-necessary flooding (lots of traffic)

= So, if stations moving were the only concern, could use a timer on order of
minutes

Spanning Tree Recalculation

« ST recalculation can change active ports and associated station caches
« ST recalculation takes < minutes

« S0, want small timeout (say, 15 secs)

= Standards committee could not make a establish a definitive value

Spanning Tree Recalculation

= Two admin-set values used:
—long value, used in normal case
— short value, used after ST re-compute
= Which to use? (how to detect ST recomp)
— can bridges just detect this?
— Some can, some cant

Topology Change
= Want to inform all bridges, but without having traffic scale as # of bridges
= Operation

— bridges noticing change send message on root port toward root

— root config messages subsequently contain “topology changed’’flag

—a simple ACK scheme is used (see Perlman92 for details)

Failures
= Algorithm so far doesn t detect or adapt to failures

= Approach
— each per-port stored config message gets a message age field



61 (]

62 (]

63 (]

64 (]

65 (]

66 ]

67 (]

—if max age reached, bridge re-calculates

—root bridge periodically transmits config message with age zero; these trigger designated
bridges to send their config msgs

A Small Snag...

= designated bridges receiving 0-age message from root send their own messages
with age zero

«if that were the only time, no reason to include age info in config message

= new bridges ’messages generate responses, but with aged value for root info;
allows for discovery of failed root

Spanning Tree Recalculation

= Recalculation on two events:
— receipt of config message on port X
= if better than current stored message for X, recalculate root, root path cost, and root port
— timer tick

= if the age in any stored config message expires, discard message and recalculate root, root
path cost, and root port

Temporary Loops

= during a topology change (new link/bridge starting or failing), time for info to
propagate (esp. with congestion)

= Inconsistent data can cause:
—loss of connectivity
— temporary loops (worse!)

Limiting Temporary Loops
= Probability is minimized by requiring bridge to wait before changing ports from
blocking to forwarding state

= Wait time should be long enough for topology information to spread through the
network

« ---> should be at least 2x max transit time across network
Why is this?
= Assume bridges B1 and B2 are maximally distant from each other. Bl is root.

«B1 sends config message, not delayed. Sends another, very delayed (X secs),
then B1 crashes.

= Bridges near B1 recompute, those near B2 wait >= max age + X sec to re-
compute

Why is this? [2]
= Suppose new root is B2
= Suppose 1st config message from B2 is delayed by X before reaching B13 area

= Then bridges near B1 will “hear’”about new toopology X time later
= Upshot: bridges near B1 could be up to 2X time out of date

Bridge Limitations
= Scale: not very realistic to interconnect more than 103 of LANs
= Heterogeneity: really works best for homogeneous systems



« All broadcasts and multicasts are flooded



