Direct Delivery (no router)

Indirect Delivery

Direct Delivery (summary)
- Sender acquires receiver's IP address (e.g. through DNS or other mechanism)
- Sender determines receiver is on same network (by comparing network prefixes)
- Sender performs ARP query to obtain receiver’s MAC address
- Sender encapsulates IP packet in local frame destined for receiver’s MAC addr

Indirect Delivery (summary)
- Same as direct, except sender determines receiver is on different net
- Sender queries routing table to determine correct next hop router
- Encapsulates IP packet in local frame destined for router’s MAC address
- Routers repeat this procedure

IP Options
- Option space limited to 40 bytes due to 4-bit IHL and 20 byte min IP header
- Zero or more options per datagram
• Different option encoding formats:
  – single byte (option type)
  – variable, starting with (type, length)

7 Option Types
• Contains 3 sub-fields
  – copied on fragmentation bit
  – option class number (2 bits)
  – option number (5 bits)

• Option Classes
  – control, reserved, debugging

• Simple options: EOL, nop (padding)

8 Source Routing
• header contains “pointer” and list of IP addresses indicating routers to be used for transit
• destination IP address is replaced by the IP address in the source routing list
• pointer is updated to next address
• IP header size remains constant

9 Record Route
• sender specifies size of IP header and sets “pointer” to indicate first (empty) 4-byte entry in option space
• each forwarder fills in its own [outgoing] IP address and increments pointer
• if full, just forwards
• issue: only 40 bytes for both option and its storage space, so 9 hops max!
Record Route Example

Time Stamp

- Facility to record routers’ notions of time, and optionally their IP addresses
- Options contains “pointer”, overflow counter [4 bits], and flag [4 bits]
  - overflow: # of IP modules that could not fit their addresses into the header
  - flag: times only, times + RR, or selected times (list of address/zero pairs)

The Time Value

- TS Options use the number of milliseconds since midnight UT
- This is a loose time requirement, so not very useful for precise measurement
- Also: setting high-order bit in time allows for non-standard time values

Source and Record Route Options

- Loose Source & Record Route (LSRR):
  - “loose” source routing: list of IP addresses need not be exact; multi-hop routes may be used between each entry
- Strict Source & Record Route (SSRR):
  - “strict” source routing: list of IP addresses need to be 1-hop away from each other

Internet Control Message Protocol (ICMP)

- IP provides no direct way of discovering the fate of
an IP packet

- Want a mechanism for error reporting and information exchange
- ICMP Protocol (RFC792)
  - logically part of IP module, but is actually encapsulated within IP

15 ICMP Operation
- Provides IP module to IP module message delivery
- Error and information reporting only
  - queries: client/server info request/resp
  - errors: reports of error conditions
- Restrictions are placed on the generation of ICMP messages to avoid cascades

16 ICMP Restrictions
- ICMP messages are not allowed to be sent in response to (RFC1812):
  - an ICMP error message (ok for queries)
  - datagrams failing header validation tests
  - broadcast or multicast IP datagrams
  - link-layer broadcast or multicast frames
  - invalid src address or zero net prefix
  - any fragment other than the first

17 IP Header Validation Tests
- To be a valid IP header:
  - link-layer must indicate frame is long enough
  - IP checksum must be correct
  - IP version number must be 4
  - IP IHL field must be at least 5
  - IP total len must be at least (IHL*4)
ICMP Error Message Data

- Historically, ICMP errors returned the offending IP header and 1st 8 data bytes
- No longer adequate with more complicated headers like IP in IP
- New rules say should contain as much as original datagram as possible, without the length of ICMP datagram being > 576 bytes (standard Internet min size)

ICMP Header

- Encapsulated as IP payload
- Type field is 1 of 15 message types
- Code indicates special sub-types
- Checksum covers entire ICMP message

ICMP Error Message Types

- 3 = Destination Unreachable
- 4 = Source Quench
- 5 = Redirect
- 11 = Time Exceeded
- 12 = Parameter Problem

ICMP Query Message Types

- 0 = Echo Reply (“ping response”)
- 8 = Echo Request (“ping query”)
- 9 = Router Advertisement (RFC 1256)
- 10 = Router Solicitation (RFC 1256)
- 13 = Time Stamp Request
- 14 = Time Stamp Reply
- 17 = Address Mask Request
- 18 = Address Mask Reply
ICMP Destination Unreachable

- Unreachable things:
  - 0: network, 1: host, 2: protocol, 3: port
  - 4: frag needed, but DF set [may incl MTU]
  - 5: source route failed
  - (there are others defined in RFC 1122)

Unreachable Destinations

- Network Unreachable
  - generated by router lacking any route to destination
- Host Unreachable
  - last hop router cannot contact destination
- Protocol Unreachable
  - host lacks a layer-4 protocol implementation
- Port Unreachable
  - no process bound to port (usually with UDP--later)

Fragmentation Needed

- Code 4 indicates the datagram required fragmentation but the DF bit was set
- Newer implementations replace (unused) 2nd word of ICMP header with next MTU
- MTU info returned to host, where it can subsequently alter its packet size to avoid fragmentation (path MTU discovery)

ICMP Source Quench

- Initial idea was that routers could generate “slow down” messages
- Problem is generating more traffic during periods of high traffic is not attractive
- Currently, routers should not generate source
quench ICMP messages

26 **ICMP Redirect**
- Indicates wrong router on network is being used as first hop. Redirect indicates which router to use instead.
- Code field values:
  - 0: network, 1: host
  - 2: TOS & Network, 3: TOS & Host

27 **ICMP Redirect**
- H’s routing table indicates R1 is proper first-hop router for its packet

28 **ICMP Redirect**

29 **ICMP Redirect**

30 **ICMP Redirect**
- R1’s routing table indicates R2 (attached to same network prefix) is the correct router for the data packet

31 **ICMP Redirect**

32 **ICMP Redirect**
- H’s routing table is now updated to indicate R2 is the proper next-hop router
- R2 will forward packet normal way

33 **ICMP Time Exceeded**
- Indicates IP packet’s delivery time has been exceeded
- Code field values:
- 0: TTL exceeded in transit
- 1: fragment reassembly time exceeded

34 **ICMP Parameter Problem**
- General catch-all for any delivery error not otherwise covered
- Pointer indicates the byte offset of the error (relative to beginning of IP header)

35 **ICMP Echo Response/Reply**
- Typically used to quickly indicate connectivity (“ping program”). Also can indicate loss, duplication, and re-ordering using the sequence number.
- Identifier allows for matching up requests with responses

36 **ICMP Router Solicitation**
- Sent by hosts (during init) to find nearby routers. May be sent from address 0.0.0.0 or known IP address. Sent to multicast 224.0.0.2 [all routers] or local broadcast IP address.

37 **ICMP Router Advertisement**
- Sent by routers quasi-periodically to indicate default routes to hosts. Sent to multicast 224.0.0.1 [all systems] or local broadcast.

38 **ICMP Router Advertisement**
- “Num Addrs” field gives the number of address blocks in advertisement message
- “Addr Entry Size” field gives # of words in each address block
• “Lifetime” is # of seconds to believe the info
• One way to get a default route [but today DHCP is more popular]

39  ICMP Timestamp Request/Reply
• Originate: when sender last touched data
• Receive: when receiver first received data
• Transmit: when echoer last touched data

40  ICMP Address Mask Request/Reply (RFC 950)
• Used to obtain network prefix (subnet mask) using ICMP
• Hosts may send during init (to broadcast address using 0.0.0.0 as source)
• Typically provided by DHCP now

41  Special Uses for ICMP
• Path MTU discovery
  – determine the smallest MTU along a path
• Route tracing
  – use ICMP error messages to “trace the route” of packets

42  Path MTU Discovery
• RFC 1191, common but not universal
• Start with packet size \( p \leq \text{local MTU} \)
  – send all packets with DF = 1
  – if frag required, router sends ICMP Dest Unreach, and may send the next MTU
  – set \( p \) to be this MTU, or search common sizes
  – periodically try to increase (up to orig. \( p \))
Route Tracing using ICMP

- “traceroute” (“tracert”) tool:
  - send UDP packet to destination host
  - start with TTL = 1, send 3, bump TTL and repeat
  - each router generates ICMP time exceeded, with its source address (provides route)
  - host generates ICMP port unreachable for bad UDP port in probe packet

- May be erroneous for changing and asymmetric routes