Direct Delivery (no router)

- Sender acquires receiver's IP address (e.g., through DNS or other mechanism)
- Sender determines receiver is on same network (by comparing network prefixes)
- Sender performs ARP query to obtain receiver's MAC address
- Sender encapsulates IP packet in local frame destined for receiver's MAC address

Indirect Delivery

- Same as direct, except sender determines receiver is on different net
- Sender queries routing table to determine correct next hop router
- Encapsulates IP packet in local frame destined for router's MAC address
- Routers repeat this procedure

IP Options

- Option space limited to 40 bytes due to 4-bit IHL and 20 byte min IP header
- Zero or more options per datagram
- Different option encoding formats:
 - single byte (option type)
 - variable, starting with (type, length)
Option Types

- Contains 3 sub-fields
 - copied on fragmentation bit
 - option class number (2 bits)
 - option number (13 bits)

- Option Classes
 - control, reserved, debugging

- Simple options: EOL, nop (padding)

Source Routing

- header contains “pointer” and list of IP addresses indicating routers to be used for transit
- destination IP address is replaced by the IP address in the source routing list
- pointer is updated to next address
- IP header size remains constant

Record Route

- sender specifies size of IP header and sets “pointer” to indicate first (empty) 4-byte entry in option space
- each forwarder fills in its own [outgoing] IP address and increments pointer
- if full, just forwards
- issue: only 40 bytes for both option and its storage space, so 9 hops max!

Record Route Example

Time Stamp

- Facility to record routers’ notions of time, and optionally their IP addresses
- Options contains “pointer”, overflow counter (4 bits), and flag (4 bits)
 - overflow: # of IP modules that could not fit their addresses into the header
 - flag: times only, times + RR, or selected times (list of address/zero pairs)

The Time Value

- TS Options use the number of milliseconds since midnight UT
- This is a loose time requirement, so not very useful for precise measurement
- Also: setting high-order bit in time allows for non-standard time values
Source and Record Route Options

- Loose Source & Record Route (LSRR):
 - "loose" source routing: list of IP addresses need not be exact; multi-hop routes may be used between each entry.

- Strict Source & Record Route (SSRR):
 - "strict" source routing: list of IP addresses need to be 1-hop away from each other.

Internet Control Message Protocol (ICMP)

- IP provides no direct way of discovering the fate of an IP packet.
- Want a mechanism for error reporting and information exchange.
- ICMP Protocol (RFC792):
 - logically part of IP module, but is actually encapsulated within IP.

ICMP Operation

- Provides IP module to IP module message delivery.
- Error and information reporting only.
 - queries: client/server info request/resp
 - errors: reports of error conditions.
- Restrictions are placed on the generation of ICMP messages to avoid cascades.

ICMP Restrictions

- ICMP messages are not allowed to be sent in response to (RFC1812):
 - an ICMP error message (ok for queries)
 - datagrams failing header validation tests
 - broadcast or multicast IP datagrams
 - link-layer broadcast or multicast frames
 - invalid src address or zero net prefix
 - any fragment other than the first.

IP Header Validation Tests

- To be a valid IP header:
 - link-layer must indicate frame is long enough
 - IP checksum must be correct
 - IP version number must be 4
 - IP IHL field must be at least 5
 - IP total len must be at least (IHL*4)

ICMP Error Message Data

- Historically, ICMP errors returned the offending IP header and 1st 8 data bytes
- No longer adequate with more complicated headers like IP in IP.
- New rules say should contain as much as original datagram as possible, without the length of ICMP datagram being > 576 bytes (standard Internet min size).
ICMP Header

- Encapsulated as IP payload
- Type field is 1 of 15 message types
- Code indicates special sub-types
- Checksum covers entire ICMP message

ICMP Error Message Types

- 3 = Destination Unreachable
- 4 = Source Quench
- 5 = Redirect
- 11 = Time Exceeded
- 12 = Parameter Problem

ICMP Query Message Types

- 0 = Echo Reply ("ping response")
- 8 = Echo Request ("ping query")
- 9 = Router Advertisement (RFC 1256)
- 10 = Router Solicitation (RFC 1256)
- 13 = Time Stamp Request
- 14 = Time Stamp Reply
- 17 = Address Mask Request
- 18 = Address Mask Reply

ICMP Destination Unreachable

- Unreachable things:
 - 0: network, 1: host, 2: protocol, 3: port
 - 4: frag needed, but DF set
 - 5: source route failed
 - (there are others defined in RFC 1122)

Unreachable Destinations

- Network Unreachable
 - generated by router lacking any route to destination
- Host Unreachable
 - last hop router cannot contact destination
- Protocol Unreachable
 - host lacks a layer-4 protocol
- Port Unreachable
 - no process bound to port (usually UDP-later)

Fragmentation Needed

- Code 4 indicates the datagram required fragmentation but the DF bit was set
- Newer implementations replace (unused) 2nd word of ICMP header with next MTU
- MTU info returned to host, where it can subsequently alter its packet size to avoid fragmentation (path MTU discovery)
ICMP Source Quench

- Initial idea was that routers could generate “slow down” messages
- Problem is generating more traffic during periods of high traffic is not attractive
- Currently, routers should not generate source quench ICMP messages

ICMP Redirect

- Indicates wrong router on network is being used as first hop. Redirect indicates which router to use instead.
- Code field values:
 - 0: network, 1: host
 - 2: TOS & Network, 3: TOS & Host

Data Packet

- R1’s routing table indicates R2 (attached to same network prefix) is the correct router for the data packet
ICMP Redirect

- R1 → H → R2

- H’s routing table is now updated to indicate R2 is the proper next-hop router
- R2 will forward packet normal way

ICMP Time Exceeded

- Indicates IP packet’s delivery time has been exceeded
- Code field values:
 - 0: TTL exceeded in transit
 - 1: fragment reassembly time exceeded

ICMP Parameter Problem

- General catch-all for any delivery error not otherwise covered
- Pointer indicates the byte offset of the error (relative to beginning of IP header)

ICMP Echo Response/Reply

- Typically used to quickly indicate connectivity ("ping program"). Also can indicate loss, duplication, and re-ordering using the sequence number.
- Identifier allows for matching up requests with responses

ICMP Router Solicitation

- Sent by hosts (during init) to find nearby routers. May be sent from address 0.0.0.0 or known IP address. Sent to multicast 224.0.0.2 (all routers) or local broadcast IP address.
ICMP Router Advertisement

- Sent by routers quasi-periodically to indicate default routes to hosts. Sent to multicast 224.0.0.1 [all systems] or local broadcast.

ICMP Router Advertisement

- "Num Addr" field gives the number of address blocks in advertisement message
- "Addr Entry Size" field gives # of words in each address block
- "Lifetime" is # of seconds to believe the info
- One way to get a default route [but today DHCP is more popular]

ICMP Timestamp Request/Reply

- Originate: when sender last touched data
- Receive: when receiver first received data
- Transmit: when echoer last touched data

ICMP Address Mask Request/Reply (RFC 950)

- Used to obtain network prefix (subnet mask) using ICMP
- Hosts may send during init (to broadcast address using 0.0.0.0 as source)
- Typically provided by DHCP now

Special Uses for ICMP

- Path MTU discovery
 - determine the smallest MTU along a path
- Route tracing
 - use ICMP error messages to "trace the route" of packets

Path MTU Discovery

- RFC 1191, common but not universal
- Start with packet size p <= local MTU
 - send all packets with DF = 1
 - if frag required, router sends ICMP Dest Unreach, and may send the next MTU
 - set p to be this MTU, or search common sizes
 - periodically try to increase (up to orig. p)
Route Tracing using ICMP

- "traceroute" ("tracert") tool:
 - send UDP packet to destination host
 - start with TTL = 1, send 3, bump TTL and repeat
 - each router generates ICMP time exceeded, with its source address (provides route)
 - host generates ICMP port unreachable for bad UDP port in probe packet

- May be erroneous for changing and asymmetric routes