Multicast Delivery

• How to send one thing to many receivers. Why do this?
 - TV/entertainment, software updates
 - Real-time info delivery (news, stock quotes)
 - Teleconferencing
 - Resource discovery

Reasons for Multicast

• Efficient multipoint distribution
 - don’t want to send a copy to each receiver if there are very many of them
• Rendezvous
 - search for resources/services among those servers that provide the service

Why not just “Machine Gun”?

• Machine gun: send same thing to each receiver using unicast
• Problems
 - wastes bandwidth (imagine 10^6 receivers)
 - burdens source with re-sending to each
 - ---> does not scale

Multicast Delivery

• Efficient one-to-many (“multipoint”) distribution of
data
- Packets copied only at branching points
- Better scaling:
 - avoids duplication/poor use of bandwidth
 - sender need not know about receivers

6 Multicast Example
7 Multicast Example
8 Multicast Example
9 Multicast Example
10 Multicast Example
11 Multicast Example
12 Multicast Example
13 Multicast Example

IP Multicast Model
- S. Deering & D. Cheriton, 1990
- Idea: take IP best effort service model and extend with efficient multipoint delivery
- Now part of IETF standards [RFC1112]

14 The MBONE
- Since about 1992, a collection of multicast-capable “islands” interconnected by the general Internet
- Uses IP-in-IP “tunneling” to bridge these islands across non-multicast-capable Internet backbone
- Used for audio/video sessions (e.g. NASA space
shuttle, IETF meetings, radio, etc)

16 IP Multicast Details
• Receivers join host groups, identified by multicast IP address
• Multicast (group) addresses use the IP class D address space [prefix 1110; range 224.0.0.0 - 239.255.255.255]
• Senders are not directly aware of receivers, and need not be group members

17 IP Multicast Model [2]
• Joining multicast groups is performed by the receivers (receiver initiated join)
• Dynamic join/leave semantics
• No restriction on number of receivers, no explicit set-up at sender
• No synchronization or end-to-end negotiation; relies on network forwarding

18 How to Construct?
• LAN multicasting already understood:
 – use layer 2 multicast addresses with interface subscriptions
 – bridges forward all multicast traffic
 – spanning tree provides loop avoidance
• How to extend to Internet (including LANs) in an efficient way? First review layer 2 multicasting...

19 Link Layer Multicast
• For Ethernet, each vendor prefix is 3 bytes long, leaving 3 extra bytes for station addresses
(16,777,216 stations)
• The low-order bit of the first byte indicates a multicast address if ‘1’ (note that Ethernet transmits bytes from low-order bit to high-order bit)
• Each prefix is really $2 \times (2^{24})$ addresses

20 Ethernet Multicast Addresses
• Each vendor prefix includes 2^{24} multicast addresses
• 2^{47} multicast addresses total [1/2 are global, half local based on “global” bit]
• Each interface can “subscribe” to as many as it is directed to (by software)
• How to store 2^{46} global addresses?

21 Ethernet Multicast Addresses
• Too many possible multicast subscriptions to store in cheap Ethernet hardware. Approaches:
 – full promisc or multicast promisc (bad)
 – use a “hash filter” (with collisions) to indicate group subscriptions
 – only store a few which perfectly match

22 Ethernet Receive Filter
• Perfect matches: chip has room for a few addresses (e.g. 16 DEC Tulip), either unicast or multicast, if not many subscriptions, all is perfect
• Hashing scheme:
 – compute $H($dest MAC address$)$, where $0 \leq H() \leq n$
 – if multicast_bit_vector[$H()$] is ‘1’, accept
 – n is often 64 (512 for DEC Tulip)
Implications of Filtering

- Receiving stations may receive traffic not destined for them:
 - if received using hash, generally requires software to provide another level of filtering
 - note that network-layer filtering may still be required
- Poor performance
 - poor filtering burdens host with interrupts/filtering

IANA’s OUI Assignment

- The Internet Assigned Numbers Authority (ISI) owns OUI 00-00-5E
- To support IP multicast, IANA provides the first 1/2 of its multicast address space (23 bits worth):
 01-00-5e-00-00-00 to 01-00-5e-7f-ff-ff

Layer 2 IP Multicast Mapping

- IANA provides $2^{23} = 8,388,608$ link-layer multicast addresses
- IP class D address [prefix 1110] provides for $2^{(32-4)} = 268,435,456$ groups
- Cannot simply use IP group address in low 28 bits of layer 2 address (simple)
- So, use a non-unique encoding...

Non-Unique Multicast Addresses

- Take low-order 23 bits of IP group address, use as low-order 23 bits for Ethernet multicast address, using 01:00:5e (plus one 0-bit) as prefix
- 32 groups share same layer 2 address
- Example: group address 224.9.12.3
- MAC address 01:00:5e:09:0c:03

27 Multicast Address Overlap

• So, 32 groups share address:
 - 224.9.12.3 <--> 01:00:5e:09:0c:03
 - 224.137.12.3 <--> 01:00:5e:09:0c:03
 - 225.9.12.3 <--> 01:00:5e:09:0c:03
 - 225.137.12.3 <--> 01:00:5e:09:0c:03
 - ...
 - 239.137.12.3 <--> 01:00:5e:09:0c:03

28 IP Address Filtering

• IP software must perform address filtering to remove packets with group addresses it is not subscribed to
• IP layer and MAC layer group subscriptions are controlled by software
• IP filtering needed even with perfect MAC layer filtering!

29 Joining Groups

• Join requests (from applications) result in adjusting local IP address filter and local MAC filter
• Also, a nearby multicast router must be informed that there is interest in the group

30 Multicast Routers

• Provide for routing of IP multicast datagrams
• May be separate from conventional routers
• Run multicast-capable routing protocols, and look for membership requests from hosts using the IGMP protocol
Internet Group Management Protocol (IGMP)

• Logically part of IP module (as ICMP)
• Used between hosts and multicast routers to establish interest in multicast groups
• Query/response architecture where routers send queries and hosts respond
• All messages use TTL scoping of TTL=1

IGMP Scenario

• IGMP Query Sent to ALL-SYSTEMS multicast address (224.0.0.1)

IGMP Scenario

• IGMP Membership Reports are sent to the groups they are reporting
• Router is “multicast promiscuous”, and hears all such reports

IGMP Scenario
• Membership reports are sent to the corresponding group address
• Provides suppression of other redundant membership reports

IGMP Scenario

IGMP Scenario

Operational Details
• Multicast routers send periodic general queries (default 125 secs) to ALL-SYSTEMS.MCAST.NET (224.0.0.1)
• Host receiving queries each set a random timer on [0..maxresponse] before sending reports; default 10 secs
• If another report is observed during delay interval, report is suppressed

Joining and Leaving
• During a join, host transmits an unsolicited membership report for joined group
• When leaving, host transmits sends a leave message to ALL-ROUTERS (224.0.0.2) group [other hosts don’t care if one leaves, so don’t bother them]
• Router can then send group-specific query to check for final members

IGMP Message Format
Internet Multicasting
- IGMP gives us local IP multicast
- How to extend across Internet?
 - Two obvious ideas:
 - flooding (copy to all egress links)
 - modification of bridge Spanning Tree

Flooding
- Router keeps copy of last packet seen
- If a new one arrives, send a copy out all but receiving interface
- Does not scale well
 - large number of duplicate packets
 - uses all available paths
 - inefficient use of router memory

Spanning Tree Extensions
- Better approach than flooding:
 - one active path between any 2 routers
 - will not loop, will reach everyone
- Problems:
 - tends to centralize traffic over a few links (the ones on the ST)
- may not provide most efficient path between each sender to all receivers