Multicast Delivery

- How to send one thing to many receivers. Why do this?
 - TV/entertainment, software updates
 - Real-time info delivery (news, stock quotes)
 - Teleconferencing
 - Resource discovery

Reasons for Multicast

- Efficient multipoint distribution
 - don't want to send a copy to each receiver if there are very many of them
- Rendezvous
 - search for resources/services among those servers that provide the service

Why not just "Machine Gun"?

- Machine gun: send same thing to each receiver using unicast
- Problems
 - wastes bandwidth (imagine 10^6 receivers)
 - burdens source with re-sending to each
 - ---> does not scale

Multicast Delivery

- Efficient one-to-many ("multipoint") distribution of data
- Packets copied only at branching points
- Better scaling:
 - avoids duplication/poor use of bandwidth
 - sender need not know about receivers

Multicast Example
Multicast Example

S
R
R

IP Multicast Model

• S. Deering & D. Cheriton, 1990
• Idea: take IP best effort service model and extend with efficient multipoint delivery
• Now part of IETF standards [RFC1112]

The MBONE

• Since about 1992, a collection of multicast-capable “islands” interconnected by the general Internet.
• Uses IP-in-IP “tunneling” to bridge these islands across non-multicast-capable Internet backbone.
• Used for audio/video sessions (e.g. NASA space shuttle, IETF meetings, radio, etc)

IP Multicast Details

• Receivers join host groups, identified by multicast IP address
• Multicast (group) addresses use the IP class D address space [prefix 1110; range 224.0.0.0 - 239.255.255.255]
• Senders are not directly aware of receivers, and need not be group members

IP Multicast Model [2]

• Joining multicast groups is performed by the receivers (receiver initiated join)
• Dynamic join/leave semantics
• No restriction on number of receivers, no explicit set-up at sender
• No synchronization or end-to-end negotiation; relies on network forwarding

How to Construct?

• LAN multicasting already understood:
 - use layer 2 multicast addresses with interface subscriptions
 - bridges forward all multicast traffic
 - spanning tree provides loop avoidance
• How to extend to Internet (including LANs) in an efficient way? First review layer 2 multicasting...
Link Layer Multicast:

- For Ethernet, each vendor prefix is 3 bytes long, leaving 3 extra bytes for station addresses (16,777,216 stations).
- The low-order bit of the first byte indicates a multicast address if '1' (note that Ethernet transmits bytes from low-order bit to high-order bit).
- Each prefix is really 2×2^{24} addresses.

Ethernet Multicast Addresses:

- Each vendor prefix includes 2^{24} multicast addresses.
- 2^{47} multicast addresses total [1/2 are global, half local based on "global" bit].
- Each interface can "subscribe" to as many as it is directed to (by software).
- How to store 2^{46} global addresses?

Ethernet Multicast Addresses:

- Too many possible multicast subscriptions to store in cheap Ethernet hardware. Approaches:
 - Full promisc or multicast promisc (bad).
 - Use a "hash filter" (with collisions) to indicate group subscriptions.
 - Only store a few which perfectly match.

Ethernet Receive Filter:

- Perfect matches: chip has room for a few addresses (e.g. 16 DEC Tulip), either unicast or multicast, if not many subscriptions, all is perfect.
- Hashing scheme:
 - Compute H (dest MAC address), where $0 \leq H < n$.
 - If multicast_bit_vector[H] is '1', accept.
 - n is often 64 (512 for DEC Tulip).

Implications of Filtering:

- Receiving stations may receive traffic not destined for them:
 - If received using hash, generally requires software to provide another level of filtering.
 - Note that network-layer filtering may still be required.
- Poor performance:
 - Poor filtering burdens host with interrupts/filtering.

IANA’s OUI Assignment:

- The Internet Assigned Numbers Authority (ISI) owns OUI 00-00-5E.
- To support IP multicast, IANA provides the first 1/2 of its multicast address space (23 bits worth):
 01-00-5e-00-00-00 to 01-00-5e-7f-ff.
Layer 2 IP Multicast Mapping

- IANA provides $2^{23} = 8,388,608$ link-layer multicast addresses.
- IP class D address [prefix 1110] provides for $2^{(32-4)} = 268,435,456$ groups.
- Cannot simply use IP group address in low 28 bits of layer 2 address (simple).
- So, use a non-unique encoding...

Non-Unique Multicast Addresses

- Take low-order 23 bits of IP group address, use as low-order 23 bits for Ethernet multicast address, using 01:00:5e (plus one 0-bit) as prefix.
- 32 groups share same layer 2 address.
- Example: group address 224.9.12.3
 - MAC address 01:00:5e:09:0c:03

Multicast Address Overlap

- So, 32 groups share address:
 - 224.9.12.3 <--> 01:00:5e:09:0c:03
 - 224.137.12.3 <--> 01:00:5e:09:0c:03
 - 225.9.12.3 <--> 01:00:5e:09:0c:03
 - 225.137.12.3 <--> 01:00:5e:09:0c:03
 - …
 - 239.137.12.3 <--> 01:00:5e:09:0c:03

IP Address Filtering

- IP software must perform address filtering to remove packets with group addresses it is not subscribed to.
- IP layer and MAC layer group subscriptions are controlled by software.
- IP filtering needed even with perfect MAC layer filtering!

Joining Groups

- Join requests (from applications) result in adjusting local IP address filter and local MAC filter.
- Also, a nearby multicast router must be informed that there is interest in the group.

Multicast Routers

- Provide for routing of IP multicast datagrams.
- May be separate from conventional routers.
- Run multicast-capable routing protocols and look for membership requests from hosts using the IGMP protocol.
Internet Group Management Protocol (IGMP)

- Logically part of IP module (as ICMP)
- Used between hosts and multicast routers to establish interest in multicast groups
- Query/response architecture where routers send queries and hosts respond
- All messages use TTL scoping of TTL=1

IGMP Scenario

- IGMP Query Sent to ALL-SYSTEMS multicast address (224.0.0.1)

IGMP Scenario

- IGMP Membership Reports are sent to the groups they are reporting
- Router is “multicast promiscuous”, and hears all such reports

IGMP Scenario

- Membership reports are sent to the corresponding group address
- Provides suppression of other redundant membership reports

Per-Interface Group Membership
Operational Details

- Multicast routers send periodic general queries (default 125 secs) to ALL-SYSTEMS.MCAST.NET (224.0.0.1)
- Host receiving queries each set a random timer on [0..maxresponse] before sending reports; default 10 secs
- If another report is observed during delay interval, report is suppressed

Joining and Leaving

- During a join, host transmits an unsolicited membership report for joined group
- When leaving, host transmits sends a leave message to ALL-ROUTERS (224.0.0.2) group (other hosts don't care if one leaves, so don't bother them)
- Router can then send group-specific query to check for final members

IGMP Message Format

<table>
<thead>
<tr>
<th>Type</th>
<th>Max Response Time</th>
<th>Checksum</th>
<th>Group Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IGMP Message Format

- Type: 0x11 = Membership Query
 - general (ALL-SYSTEMS), group address zero
 - group-specific, multicast to group address
- Type: 0x16 = Membership Report (v2)
- Type: 0x17 = Leave Group
- MRT: max bound on report range (.1sec)

Internet Multicasting

- IGMP gives us local IP multicast
- How to extend across Internet?
- Two obvious ideas:
 - flooding (copy to all egress links)
 - modification of bridge Spanning Tree

Flooding

- Router keeps copy of last packet seen
- If a new one arrives, send a copy out all but receiving interface
- Does not scale well
 - large number of duplicate packets
 - uses all available paths
 - inefficient use of router memory

Spanning Tree Extensions

- Better approach than flooding:
 - one active path between any 2 routers
 - will not loop, will reach everyone
- Problems:
 - tends to centralize traffic over a few links (the ones on the ST)
 - may not provide most efficient path between each sender to all receivers