Wide Area Multicast Delivery

- Simple approaches (flooding and ST modifications) don’t scale so well
- Two Types of Distribution Techniques:
 - Source-Based Tree Approaches
 - build a distribution tree rooted at each sender
 - Shared Tree Approaches
 - one shared tree per group that hosts must attach to

Source-Based (“shortest path”) Trees

- Build spanning trees rooted at each sender of each group
- Reverse Path Broadcasting (RPB)
- Truncated Reverse Path Broadcasting (TRPB)
- Reverse Path Multicasting (RPM)

Reverse Path Broadcasting

- Build a simplex spanning tree for each potential source [really source subnet]
- Given multiple senders per group, implies a different delivery tree for each source
- RPB Operation
 - for each received packet, if it was received on the link on the shortest path back to the source, forward to all but the receiving link

Components
Reverse Path Forwarding

- Uses both source and destination addresses
- Algorithm:
 - look up source address in routing table
 - compare route entry with receiving interface
 - if wrong interface, drop
 - for each outgoing interface with group members downstream, forward packet

Implications of RPF Algorithm

- different tree for each source (source address identifies tree)
- tree is shortest path from source to destination (fastest delivery)
- packets spread over multiple links, leading to better network utilization

Observations

- Packet duplication due to flooding
• No use of global topology information or dynamic group membership
• Specialized forwarding algorithm:
 – RPF (reverse-path forwarding)

16 Extending RPB
• Improvement to RPB (“extended RPB”):
 – use routing protocol to detect which of neighbors links are parent links
 – can cut down some packet duplication
• Leaf subnets with no members still see traffic
• How to take advantage of group info?

17 Truncated RPB
• Use IGMP information to determine which leaf subnets contain members
• Routers don’t deliver to subnets with no members
• Results:
 – saves some bandwidth on LANs, but does not address duplication across branches of distribution tree

18 Reverse Path Multicasting (RPM)
• Enhance RPB (TRPB) so that tree branches are activated only when necessary
• More precisely, tree branches only serve:
 – subnets with group members
 – routers and subnets along the shortest path to those subnets

19 Pruning the Distribution Tree
• RPM supports notion of “pruning” where routers can send messages indicating they should not
receive traffic
• So, use TRPB algorithm for first packet to (source, group) pair
• Leaf routers with no group members send “prune” message on parent link (“broadcast and prune” approach)

20 Router Prune Processing
• (Upstream) routers receiving prune messages store them (“prune state”)
• Routers with no local group members and that have received prunes on each child may, in turn, send prune on their parent links
• Cascade of prunes results in only “live” tree being used (to active receivers)

21 Reacting to Change
• Both topology and group members may change over time
• Thus, prune state contains a kill timer, and must be refreshed periodically (example of soft state)
• If kill timer expires but more traffic arrives, it is treated anew (using TRPB initially)

22 How Long to Age Prunes?
• Too long: join time unreasonable (prune state keeps data from flowing)
• Too short: back toward TRPB (extra traffic overhead)
• Solution, use longer values [default 2 hours] with prune cancellation messages (grafts)
Grafts

- Routers discovering new members for groups they have pruned may send graft messages to cancel existing prune state
- Grafts are reliably delivered
 - end nodes can’t easily determined if a graft was lost or the sender stopped sending

Scaling Issues

- Multicast packets still periodically broadcast to all routers
- Each router must maintain (S,G) routing or prune state
- Biggest problem is when there is sparse membership across big internet (intermediate routers hold state)

Alternative Approaches

- approaches to handle multicast groups with “sparse” membership (widely distributed)
- keep state for receivers present rather than the reverse (assume non-membership rather than membership)
- do not keep state for each source

Shared Trees

- Idea is to construct a single tree (per group) that each source and receiver attaches to [spanning tree per group]
- Routers maintain only (*,G) state, not (S,G) state, leading to better scaling especially with many
senders
 • Do not require periodic flooding

27 Limitations
 • Leads to traffic concentrations near core set of routers (routers on shared tree)
 • May result in suboptimal routing to source

28 Perspective
 • Dense Mode Protocols
 - bandwidth plentiful, receivers are densely distributed
 - assume membership, correct for mistakes
 • Sparse Mode Protocols
 - bandwidth expensive, receivers are sparsely distributed
 - assume not members, require joins

29 Routing Protocols (briefly)
 • Distance Vector
 - carries (cost, direction) information
 - each node has partial information
 - computation is distributed, relies on intermediates
 • Link State
 - multicasts topology information to all routers
 - each router computes shortest paths

30 Dense Mode Protocols
 • DVMRP (distance vector approach)
 - source-based trees using RPM
 - supports tunnels (IP/IP across unicast nets)
 • PIM-DM (distance vector approach)
 - uses unicast routing tables
 - source-based trees using RPM
- does not compute child interfaces

31 Dense Mode Protocols
- MOSPF (link-state approach)
 - no tunnels
 - SP trees built on-demand using entire topology database
 - no initial flooding, uses explicit join
 - not RPF based

32 Sparse Mode Protocols
- PIM-SM (PIM Sparse Mode)
 - uses unicast routing protocol information
 - routers must explicitly join shared tree
 - use rendezvous points (RP) for sources to meet receivers
 - routers must know RP set for region
 - joins are unicast toward RP
 - can switch dynamically to source-based tree

33 Sparse Mode Protocols
- CBT (Core Based Trees)
 - uses unicast routing protocol information
 - never switches to source based trees
 - tree branches are bi-directional, no special unicast encapsulation

34 Protocol Characteristics
- Use of unicast routing tables
 - PIM-SM and PIM-DM, CBT
- Link state or distance-vector
 - DV: DVMRP, LS: MOSPF
- Soft (DVMRP, PIM) or hard (CBT) state
• Sparse (PIM-SM, CBT), Dense (DVMRP)

35 ☐ **Multicast Scope Control**

• With multicasting, very easy to send traffic all over
• Would like to limit using scope control:
 - TTL scope: use TTL value in IP packets to limit number of hops traversed
 - Admin scope: allocate certain IP address ranges, and do not forward them

36 ☐ **TTL Scope Control**

• Assign TTL thresholds to each link:
 - if (packet TTL < threshold) drop packet
 - recall no ICMP time exceeded for multicast
• TTL Threshold Conventions:
 - 0: same host, 1: same subnet
 - 15: same site, 63: same region (west coast)
 - 127: worldwide, 191: worldwide, limited bw
 - 255: unlimited scope

37 ☐ **Expanding Ring Search**

• Can use TTL as a basis for searches
• Expanding ring search:
 - 1> start with TTL=1
 - 2> multicast query, await response
 - 3> if no response, increase TTL
 - 4> if TTL reaches max, failure
 - 5> go to step 2

38 ☐ **Limitation of Expanding Ring Search**

• TTL scoping requires “successive containment” property and will not work with overlapping regions
In addition, routers which discard TTL-expired packets may not be capable of pruning sources, leading to excessive bandwidth consumption.

Administrative Scoping

- Associate scope limitations with special address ranges (the 239/8 address block)
- Key properties [RFC 2365]:
 - packets addressed to admin scoped addresses do not cross admin boundaries
 - admin scoped multicast addresses are locally assigned; may be re-used in different administrative regions

Supporting Admin Scoping

- Routers support per-interface scoped IP multicast boundaries
- Does not forward packets in either direction across boundary
- Senders use admin scoped destination addresses, limiting overall distribution