Wide Area Multicast Delivery

- Simple approaches (flooding and ST modifications) don't scale so well
- Two Types of Distribution Techniques:
 - Source-Based Tree Approaches
 - build a distribution tree rooted at each sender
 - Shared Tree Approaches
 - one shared tree per group that hosts must attach to

Source-Based ("shortest path") Trees

- Build spanning trees rooted at each sender of each group
- Reverse Path Broadcasting (RPB)
- Truncated Reverse Path Broadcasting (TRPB)
- Reverse Path Multicasting (RPM)

Components

- Parent Link (on shortest path to source)
- Child Links (to other routers)
- LAN
- Leaf Subnet

Reverse Path Forwarding

- Uses both source and destination addresses
- Algorithm:
 - look up source address in routing table
 - compare route entry with receiving interface
 - if wrong interface, drop
 - for each outgoing interface with group members downstream, forward packet
Implications of RPF Algorithm

- different tree for each source (source address identifies tree)
- tree is shortest path from source to destination (fastest delivery)
- packets spread over multiple links, leading to better network utilization

RPB Operation

- Leaf subnets
- Multicast Routers
- Shortest path toward A
Observations

- Packet duplication due to flooding
- No use of global topology information or dynamic group membership
- Specialized forwarding algorithm:
 - RPF (reverse-path forwarding)

Extending RPB

- Improvement to RPB ("extended RPB"):
 - Use routing protocol to detect which of neighbors links are parent links
 - Can cut down some packet duplication
- Leaf subnets with no members still see traffic
- How to take advantage of group info?

Truncated RPB

- Use IGMP information to determine which leaf subnets contain members
- Routers don’t deliver to subnets with no members
- Results:
 - Saves some bandwidth on LANs, but does not address duplication across branches of distribution tree

Reverse Path Multicasting (RPM)

- Enhance RPB (TRPB) so that tree branches are activated only when necessary
- More precisely, tree branches only serve:
 - Subnets with group members
 - Routers and subnets along the shortest path to those subnets
Pruning the Distribution Tree

- RPM supports notion of “pruning” where routers can send messages indicating they should not receive traffic.
- So, use TRPB algorithm for first packet to (source, group) pair.
- Leaf routers with no group members send “prune” message on parent link (“broadcast and prune” approach).

Router Prune Processing

- (Upstream) routers receiving prune messages store them (“prune state”).
- Routers with no local group members and that have received prunes on each child may, in turn, send prune on their parent links.
- Cascade of prunes results in only “live” tree being used (to active receivers).

Reacting to Change

- Both topology and group members may change over time.
- Thus, prune state contains a kill timer, and must be refreshed periodically (example of soft state).
- If kill timer expires but more traffic arrives, it is treated anew (using TRPB initially).

How Long to Age Prunes?

- Too long: join time unreasonable (prune state keeps data from flowing).
- Too short: back toward TRPB (extra traffic overhead).
- Solution, use longer values [default 2 hours] with prune cancellation messages (grafts).

Grafts

- Routers discovering new members for groups they have pruned may send graft messages to cancel existing prune state.
- Grafts are reliably delivered.
- End nodes can’t easily determine if a graft was lost or the sender stopped sending.

Scaling Issues

- Multicast packets still periodically broadcast to all routers.
- Each router must maintain (S,G) routing or prune state.
- Biggest problem is when there is sparse membership across big internet (intermediate routers hold state).
Alternative Approaches

- approaches to handle multicast groups with "sparse" membership (widely distributed)
- keep state for receivers present rather than the reverse (assume non-membership rather than membership)
- do not keep state for each source

Shared Trees

- Idea is to construct a single tree (per group) that each source and receiver attaches to [spanning tree per group]
- Routers maintain only (*,G) state, not (S,G) state, leading to better scaling especially with many senders
- Do not require periodic flooding

Limitations

- Leads to traffic concentrations near core set of routers (routers on shared tree)
- May result in suboptimal routing to source

Perspective

- Dense Mode Protocols
 - bandwidth plentiful, receivers are densely distributed
 - assume membership, correct for mistakes
- Sparse Mode Protocols
 - bandwidth expensive, receivers are sparsely distributed
 - assume not members, require joins

Routing Protocols (briefly)

- Distance Vector
 - carries (cost, direction) information
 - each node has partial information
 - computation is distributed, relies on intermediates
- Link State
 - multicasts topology information to all routers
 - each router computes shortest paths

Dense Mode Protocols

- DVMRP (distance vector approach)
 - source-based trees using RPM
 - supports tunnels (IP/IP across unicast nets)
- PIM-DM (distance vector approach)
 - uses unicast routing tables
 - source-based trees using RPM
 - does not compute child interfaces
Dense Mode Protocols

- MOSPF (link-state approach)
 - no tunnels
 - SP trees built on-demand using entire topology database
 - no initial flooding, uses explicit join
 - not RPF based

Sparse Mode Protocols

- PIM-SM (PIM Sparse Mode)
 - uses unicast routing protocol information
 - routers must explicitly join shared tree
 - rendezvous points (RP) set for sources to meet receivers
 - routers must know RP set for region
 - joins are unicast toward RP
 - can switch dynamically to source-based tree

- CBT (Core Based Trees)
 - uses unicast routing protocol information
 - never switches to source based trees
 - tree branches are bi-directional, no special unicast encapsulation

Protocol Characteristics

- Use of unicast routing tables
 - PIM-SM and PIM-DM, CBT
- Link state or distance-vector
 - DV: DVMRP, LS: MOSPF
- Soft (DVMRP, PIM) or hard (CBT) state
- Sparse (PIM-SM, CBT), Dense (DVMRP)

Multicast Scope Control

- With multicasting, very easy to send traffic all over
- Would like to limit using scope control:
 - TTL scope: use TTL value in IP packets to limit number of hops traversed
 - Admin scope: allocate certain IP address ranges, and do not forward them

TTL Scope Control

- Assign TTL thresholds to each link:
 - if (packet TTL < threshold) drop packet
 - recall no IGMP time exceeded for multicast
- TTL Threshold Conventions:
 - 0: same host, 1: same subnet
 - 15: same site, 63: same region (west coast)
 - 127: worldwide, 191: worldwide, limited bw
 - 255: unlimited scope
Expanding Ring Search

- Can use TTL as a basis for searches
- Expanding ring search:
 - 1: start with TTL = 1
 - 2: multicast query, await response
 - 3: if no response, increase TTL
 - 4: if TTL reaches max, failure
 - 5: go to step 2

Limitation of Expanding Ring Search

- TTL scoping requires "successive containment" property and will not work with overlapping regions
- In addition, routers which discard TTL-expired packets may not be capable of pruning sources, leading to excessive bandwidth consumption

Administrative Scoping

- Associate scope limitations with special address ranges (the 239/8 address block)
- Key properties [RFC 2365]:
 - Packets addressed to admin scoped addresses do not cross admin boundaries
 - Admin scoped multicast addresses are locally assigned; may be reused in different administrative regions

Supporting Admin Scoping

- Routers support per-interface scoped IP multicast boundaries
- Does not forward packets in either direction across boundary
- Senders use admin scoped destination addresses, limiting overall distribution