Asynchronous Transfer Mode (ATM)

Concepts

- Motivations:
 - flexibility of the Internet
 - per-connection QoS facilities of telephone network

- Basic architecture:
 - virtual circuits
 - small fixed-size packets (cells)
 - statistical multiplexing
 - traffic types and QoS support

STM and Packet Switching

- Issues with Synchronous Transfer Mode:
 - unused time slots wasted because receiver knows owner of data only by timing
 - because of fixed cyclical schedules in TDM, can only get bandwidth in multiples of the available schedule (e.g. n * 64kb/s)

- Packet Switching:
 - by placing headers on packets, can provide statistical multiplexing (better utilization) at the added cost of additional buffering
Packet Switched Networks

• The datagram method (like Internet)
 - every packet has complete destination (and possibly source) information; wastes bandwidth if addresses are long
 - independent forwarding; reordering allowed

• The virtual circuit (VC) method
 - every packet has small identifier which is mapped at each hop to connection info (smaller overhead)
 - requires connection setup, followed by data

Virtual Circuit Identifiers (VCIs)

• How to know which identifier (VCI) should be placed in a packet?
 - unique global selection is difficult in large networks
 - instead, use a locally-unique identifier
 - requires translation (swapping) at each intermediate switch

• Each switch must maintain per-connection state to facilitate routing and label swapping

Implications of VC Switching

• switches maintain tables
 - switch failure kills connections

• data follows the same route after set-up
 - re-ordering tricky or not allowed
 - duplication unlikely

• data/signaling separation

• no guarantee of low loss

• required set-up takes an RTT

Some Particulars
• Types of VC:s
 – Permanent (pre set-up) VCs (PVCs)
 – Switched (set up on demand) VCs (SVCs)
 – pt-to-pt (uni/bi directional), multipoint (uni)
• Virtual Path (VP) and Circuit (VC)
 – each contain an ID, often combined
 – some switches provide for VC aggregation by switching VPs rather than VCs
• Can be used for tag/L3/MPLS approaches

8 ATM Signaling
• Separation of signaling
 – UNI - node and network; NNI - internal to the network
 – UNI 4.0 (latest, 136 pps) includes recv-inititated joins
• UNI 3.0/3.1 based on Q.2931, in turn based on Q.931 (used for N-ISDN)
• One-pass method of circuit set-up
 – routing and admit control based on dest address, QoS

9 Cell Switching
• ATM uses fixed-sized “cells”
 – simpler buffer hardware
 – simpler line scheduling (recall WFQ)
 – large parallel switches easier to build
• Actually uses 5 byte header and 48 byte payload:
 – 48 is average of 32 and 64; 9.4% overhead
 – what you get when designed by committee

10 Buffer Hardware
• Usually need to pre-allocate buffer areas prior to receiving packets:
- if variable-sized packets are used, can vastly under-utilize allocated space
- if variable-sized buffers are used, more complexity in managing multiple free lists
 - With single fixed size, only 1 list necessary; minimizes memory fragmentation

Line Scheduling
- If only fixed-sized packets are ever used, not hard to provide ratios of bandwidth allocated to various circuits
 - With variable-sized packets, things are more complicated:
 - need to account for larger packet sizes
 - recall bit-by-bit round-robin and how it is approximated with fair queueing

Large Parallel Switches
- For large switches, generally need parallel processing to perform switching function
 - If packets always the same size, can predict amount of time spent in each hardware resource/pipelining stage
 - Variable-sized packets can degrade parallelism

Problems with Fixed Sizes
- Source wishing to send a message larger than fixed size must divide it up (segmentation)
 - Receiver must be ready to reconstruct original message (reassembly)
 - If message size is < than fixed size, excess bandwidth is wasted; similar problem for last cell of message
The Overhead/Delay Tradeoff
- A smaller fixed-size cell provides for a smaller packetization delay (time to wait before sending a message)
- A larger cell provides a better overhead rate
- With ATM 5 bytes of 53 are overhead, so can never be more than 90.57% efficient

Integrated Services
- ATM provides the ability to specify a Quality of Service (QoS) associated with virtual circuits (a traffic descriptor)
- During setup, an admission control procedure is invoked to allocate resources
- If successful, traffic policing is used to verify user does not violate agreement

ATM Addressing
- ATM is envisioned to be use both as a public and private network
- Public network addresses are worldwide-unique “phone numbers” (E.164)
- For private networks, addressing is based on ISO standard (called NSAP) addresses

ATM Addressing
- Network Service Access Point (NSAP) addresses, originally from ISO:
 - variable-length (between 7 and 20 bytes)
 - hopelessly cumbersome set of acronyms...
 - and to make it more confusing, there is a way to encode E.164 addresses in NSAP format
The NSAP Format...

- IDI can be E.164 “phone number”
- DCC Format: IDI is data country code, country identifiers from ISO 3166. Administered by ISO national members
- ICD: Intl Code Designator (from BSI)

NSAP Acronym Decode
- NSAP, network service access point
- AFI, authority & format identifier
- IDI, initial domain identifier
- ICD, international code designator (BSI)
- DCC, data country code (ISO)
- IDP, initial domain part (AFI + IDI)
- DSP, domain specific part (end sys addr)
- HO-DSP, high-order bits of DSP (prefix)
- ESI, end system identifier (like host part)
- SEL, selector (like link type field)

Service Provided by ATM
- connection-oriented (VCs)
 - point-to-point (unidirectional, bidirectional)
 - point-to-multipoint (unidirectional only)
- in-sequence (no re-ordering)
- unreliable (no retransmission)
- QoS on a per-VC basis

ATM Cell Header Format
• VPI/VCI: virtual path/circuit ID
• PT: payload type, CLP: cell loss priority
• HEC: header error check (CRC8)
• GFC: generic flow control (mostly ignored)

22 ATM Cell Payload Type Field
• First PT bit 1 means management cell
• First PT bit 0 means user cell:
 - next bit is explicit forward congestion indication (EFCI)
 - 3rd bit is “user signaling” bit, used primarily as EOF indicator for AAL5 (a sort of layer violation)

23 ATM Adaptation Layers (AAL)
• AAL1: constant bit-rate CBR service
• AAL3/4: VBR service, checksums on each cell, detects loss/corruption; 4 bytes of 48 byte payload used for overhead [see book, p 183]
• AAL5: VBR service, checksums on each frame, detects loss/corruption; simpler header, less overhead than AAL3/4
• AAL5 is most popular...

24 AAL5
• Using a layer violation, use one bit in the ATM header PT field to mark end of PDU
• No per-cell CRCs, all frame meta-data appears at end of AAL5-layer frame
• Provides up to 64KB data in frame:

25 AAL5 Frame Fields

• Pad: used to fill-out frame to be an even multiple of 48 bytes. Allows for frame meta-data to always appear at end of entire AAL5 frame
• UU: user-to-user info, treated as opaque data by ATM, unspecified [in 1996]
• CPI: a type field, current value of zero
• Length: length of overall PDU
• CRC: CRC over entire payload

26 IP and ATM

• In the late 80’s and early 90’s there was hope among ATM providers that TCP/IP could be abandoned in favor of a completely ATM-based network
• They lost.
• ATM is use today primarily in wide-area support of IP-based networking
• So, how to use IP with ATM?

27 IP over ATM

• ATM characteristics:
 - connection-oriented
 - fixed small cells
 - non-broadcast
 - QoS support
 - several address formats
• IP characteristics:
 - connectionless
 - variable-sized datagrams
 - ARP requires broadcast
 - best-effort service
- single address format

28 IP Encapsulation on AAL5
 - need to place IP packet in AAL5 frame, and translate IP address to ATM address
 - so, just place IP packet in payload part:
 - well, what if non-IP traffic is also there?
 - use 802-compatible LLC/SNAP header
 - uses up 8 bytes, with 2 for protocol selection
 - how to translate the address?
 - can't broadcast on ATM

29 Address Mapping for ATM
 - Create ARP Server, used to hold IP-to-ATM address mappings for the LAN
 - ATM hosts must contact server to ascertain destination ATM address (during exchange, server learns requester’s mappings too)
 - To avoid scaling problems with large ATM network, divide up ATM net into logical IP subnets (LISs); broadcast only within LIS [called Classical IP on ATM]

30 NHRP (Next-Hop Routing Protocol)
 - Problem is that we need to go thru an IP router even on same ATM net
 - NHRP solves this by providing mappings for all reachable ATM hosts
 - NHRP servers self-coordinate (a bit like DNS servers)
 - See RFC 2332 (Apr 1998)

31 Multicast
• How to do receiver-based join given source-based multipoint VCs?
• MARS - multicast address resolution servers
• MARS servers map IP multicast packets to all interested receivers
• Can also map IP multicast address to set of ATM addresses for source based multipoint VCs

32 △ LAN Emulation (LANE)
• A way of using ATM net essentially as a layer 2 bridge; (spanning tree protocol still used for loop avoidance)
• Broadcasting provided by a broadcast server
• Hides QoS support, so good for migration to ATM, but doesn’t really take advantage of it
• Only Ethernet and Token Ring for now...

33 △ Virtual LANs (VLANs)
• Administrator can set up multiple different emulated LANs
• Removes hard association between physical location and attached LAN
• Possible to apply different policy to different VLANs

34 △ ATM Routing (P-NNI)
• ATM standard hierarchical routing protocol (>2 levels of hierarchy)
• Link state approach, but uses source routing set up at edge nodes
• Switch controllers form peer groups, elect a peer group leader to enter in the next-higher-level group
• Can annotate route info with QoS constraints

35 PNNI QoS Routing

• ATM QoS types:
 - CBR (constant bit-rate w/timing)
 - VBR (variable bit-rate w/timing)
 - ABR (available bit-rate, no timing)
 - UBR (unspecified bit rate)

• Admission control at each node; on failure resorts to crankback to find an acceptable path