You would somehow like to have your data (or that of others) be secure. This often means you want to:
- know who really sent it
- know nobody else read it

More specifically, protect from:
- eavesdropping, masquerading, replay, traffic analysis, exploit-based attacks, denial-of-service

These attacks are often classified as
- Active:
 - somebody actually generates or modifies network traffic
 - easier to detect, harder to prevent
- Passive:
 - somebody just collects and analyses network traffic
 - harder to detect, easier to prevent

One type of approach is based on physical security
- usually expensive and of limited scope
- may provide the best assurances

Other (more common) approaches
- hide your data somehow
 - just don’t tell (“security through obscurity”)
 - scramble it using some math (cryptography)!

Cryptographers develop mathematical codes to hide or sign data

Cryptanalysts attempt to compromise the codes developed by the cryptographers
- Cryptographers job is usually to find a thought-to-be hard mathematical problem and develop a coding scheme based on it
- Cryptanalysts job is usually to find a flaw (not always with the math, but often with the initial assumptions!)

E: encryption function, D: decryption function, M: cleartext

K and K’ are called keys (bit strings), where K may be equal to K’ (called shared keys)
The Main Issues

- For the cryptographer, the main issues:
 - choice of the transformation (D and E)
 - is the underlying mathematical basis efficient for decoding and encoding with keys and hard without them?
 - do you publish the algorithm or not?
 - generation and distribution of keys
 - might like to use random numbers, but computers aren’t exactly random devices
 - how do you get a secret from one person to another if you don’t already have keys?

- For the cryptanalyst, the main issues:
 - what is already known?
 - algorithm, plaintext-ciphertext pairs, any information about generation of the keys
 - types of attacks
 - ciphertext only (freq analysis, brute force)
 - known plaintext
 - chosen plaintext

Secret Key Functions

- generally a single key [symmetric] shared among parties (K=K’); (still must be distributed somehow)
- rekeying is common, distributed in-band
- example uses:
 - challenge/response authentication
 - secure storage in insecure media
 - cryptograph checksums

Public Key Functions

- Fascinating class of functions using more than 1 key (usually 2) [asymmetric]
 - public keys usually published
 - private keys are kept secret
 - they are mathematically related
- Provides auth and/or privacy:
 - E(M, priv(A)) ---> signed by A
 - E(M, pub(A)) ---> only A can read it
 - E(E(M, priv(A)), pub(B)) -> from A to only B

Hashes and Message Digests

- Essentially one-way “digests” of messages. With msg M, function H:
 - hard: find different M, M’ where H(M)=H(M’)
 - hard: given H(M), find M
 - easy: given M, produce H(M)
- Common example is MDS
 - hashes arbitrarily-long messages to 128-bit signature (RFC1321)
 - used for file verification, IPSEC, etc

The Basics of DES

- 56-bit keys, 64-bit block cypher, key usually expressed as 56+8 parity bits
 - not really long enough; why chosen?
 - Estimated 3DES is 2^56 times better
- symmetric, single-key
 - requires exchange of key
 - (maybe use public key for exchange)
- reasonably fast (de)crypt functions
The Basics of DES (cont’d)

• How it works (in a nutshell)
 - permute (shuffle) the 64 bits
 - using the 56-bit key, take 16 different 48-bit subsets of the 56-bit key as “per-round” keys
 - the input to each round is the output of the previous one, plus the 48-bit round key
 - swap the two 32-bit halves, then permute them (inverse of initial permutation)
• Details start on p. 372 in text

The Basics of RSA

• can be used for encryption and signing
• asymmetric “public-key” cryptography, using 512 bits (or more) for key
• how to start it off
 - pick big primes p, q; form n=pq; create an encryption key e such that e and (p-1)(q-1) are relatively prime [only comm. factor is 1]
 - decryption key d=1/e mod ((p-1)(q-1)); the inverse of e in mod((p-1)(q-1))

The Basics of RSA (cont’d)

• Public key is {e,n}, private key is {d,n}; p,q no longer needed but must not be disclosed
• With a message m and ciphertext c:
 - Encryption: c = m^e mod n
 - Decryption: m = c^d mod n
 - works because m^(ed) = m & m<n (reqd)
• If you can factor n (to get p,q), you can break RSA, but we think this is hard

Random Numbers

• Cryptographic exchanges often involve the use of random numbers (session keys)
• computers typically produce pseudorandom numbers, initialized by a random number seed
 - completely predictable given initial conditions, numbers merely look random
 - sometimes use human input (typing) as a seed to a RNG, or some other device

Random Number Generation

• The RNG has been a key failure in some otherwise decent systems:
 - too small (16 random bits->64K keys)
 - using the clock, which doesn’t increment fast enough (not that large a space to search)
 - divulging the seed
• See RFC1750

In the first half of the semester...

• Networking concepts
 - remote access to resources
 - controlled sharing
 • multiplexing: TDM, Stat Mux
 - protocols and layering
 • ISO reference model, encapsulation
 • service model, error detection
 • end-to-end argument
 • soft state
In the first half of the semester...

- Development of the Internet
 - interconnection of heterogeneous networks
 - simple best-effort service model
 - fully-connected graph of hosts (routing)
- Internet scaling issues
 - use of hierarchies in routing, addresses, DNS
 - use of caching in DNS

In the first half of the semester...

- Direct-link networks
 - signals, modulation, error detection
 - best-effort delivery between attached stations
 - possible error correction using codes
 - MAC protocols, Ethernet

In the first half of the semester...

- The Internet Protocol
 - IP service model
 - best-effort datagram model
 - error detection in header only
 - consistent, abstract packet, addressing
 - routing
 - signaling (ICMP)
 - multicasting, IGMP, multicast routing
 - IP futures with IPv6

And in the second half...

- Routing Protocols
 - interior and exterior versions
 - distance vector
 - link state
- Internet Scaling Issues
 - CIDR
 - IPv6 / very large addresses

And in the second half...

- The Transport Layer
 - access to processes/endpoints, ports
- User Datagram Protocol (UDP)
 - best-effort datagram service
 - error detection, no correction, pseudoheader
- Transport Control Protocol (TCP)
 - reliable stream service
 - error detection/correction
 - flow and congestion control

And in the second half...

- How to achieve reliability
 - ARQ, ACKs, retransmission
 - Stop & Wait, performance
 - the bandwidth-delay product
 - go-back-n, window-based protocols
 - retransmission timers
 - types of ACKs/NACKs, dup ACKs
 - window-based flow control
And in the second half...

• Introduction to Congestion
 - congestion and congestion collapse
 - implicit/explicit congestion notification
 - bw-product as ideal window size

• Queuing and Scheduling
 - FIFO/FCFS, burst loss
 - Fair Queuing and Round-Robin
 - Random Early Detection (RED)

And in the second half...

• Congestion control
 - closed versus open-loop
 - host vs network enforcement
 - effectiveness, fairness, fairness index

• Congestion Control in TCP
 - slow start & congestion avoidance
 - fast retransmit
 - RTT estimation and timeout, Karn algorithm
 - silly window syndrome, Nagle algorithm

And in the second half...

• Connection Management in TCP
 - bi-directional connections, 4-duples
 - SYN 3-way handshake, FIN exchange
 - initial sequence numbers

• Some Implementation Issues
 - user vs kernel space
 - buffers
 - lookup maps/tables
 - event management, timers

And in the second half...

• Introduction to the Telephone Network
 - circuit switching, calls, set-up/tear-down
 - the regulatory environment
 - basic structure
 - TDM, pleisochronous operation, justification
 - SONET
 - data/control separation, signaling
 - CCIS and SS7
 - routing: DNHR, metastability, RTNR

And in the second half...

• Introduction to ATM
 - asynchronous operation, VC approach
 - cells and reasons for them
 - framing and adaptation layers, AAL5
 - issues in IP over ATM

And in the second half...

• Quality of Service
 - application types (elastic and inelastic)
 - traffic descriptors
 - leaky/token buckets and regulation
 - max-min fairness
 - performance bounds, delay distribution
 - choices in scheduler design
 - scheduling and packet drop strategies
 • GPS, WRR, DRR, PGPS/WFQ, VC, EDD
And in the second half...

- Real-world QoS examples
 - ATM QoS
 - CBR, VBR, ABR, UBR services
 - PCR, SCR, MBS, MCR traffic parameters
 - CDV (T), maxCTD, CLR QoS parameters
 - admission control, equivalent capacity (not really ATM specific per-se)
 - Internet QoS
 - IntServ: TSPECS, controlled load, guaranteed
 - DiffServ: general model, AF and EF PHBs
 - RSVP