
Evaluating the Suitability of
Server Network Cards for Software Routers

Maziar Manesh§ Katerina Argyraki‡ Mihai Dobrescu‡ Norbert Egi⋆

Kevin Fall§ Gianluca Iannaccone§ Eddie Kohler† Sylvia Ratnasamy§

‡EPFL, †UCLA, §Intel Labs Berkeley, ⋆Lancaster Univ.

1. INTRODUCTION

The advent of multicore CPUs has led to renewed
interest in software routers built from commodity PC
hardware[6, 5, 8, 7, 3, 4]. The typical approach to scal-
ing network processing in these systems is to distribute
packets, or rather flows of packets, across multiple cores
that process them in parallel. However, the traffic ar-
riving (departing) on an incoming (outgoing) link at a
router is inherently serial and hence we need a mecha-
nism that appropriately demultiplexes (multiplexes) the
traffic between a serial link and a set of cores. I.e.,
multiple cores can parallelize the processing of a traffic
stream but to fully exploit the parallelism due to multi-
ple cores we must first be able to parallelize the delivery

of packets to and from cores. Moreover, this paralleliza-
tion must be achieved in a manner that is: (i) efficient,
ensuring that the splitting/merging of traffic isn’t the
bottleneck along a packet’s processing path and (ii) well

balanced such that input processing load can be well bal-
anced across available cores for a range of input traffic
workloads (e.g., diverse flow counts, flow sizes, packet
processing applications, and so forth). If either of these
requirements is not met, the parallelism due to multi-
ple cores might well be moot. In other words, achieving
parallelism in packet delivery is critical for any software
routing system that exploits multiple cores.

Recent efforts point to modern server network inter-
face cards (NICs) as offering the required mux/demux
capability through new hardware classification features[5,
8, 3, 7]. In a nutshell,1 these NICs offer the option of
classifying packets that arrive at a port into one of mul-

1We discuss current NIC architectures and features in
greater detail in Section 3.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM PRESTO 2010, November 30, 2010, Philadelphia, USA.

Copyright 2010 ACM 978-1-4503-0467-2/10/11 ...$10.00..

tiple hardware queues on the NIC and this set of queues
can then be partitioned across multiple cores; each core
thus processes the subset of traffic that arrives at its as-
signed queues. Effectively, this NIC-level classification
capability serves to parallelize the path from a NIC to
the cores, and vice versa. Building on this observa-
tion, recent efforts leverage “multi-Q” NICs in their
prototype systems[5, 8, 3, 6] and show that enabling
NIC-level classification significantly improves a server’s
packet processing capability ([5] reports a 3.3x increase
in forwarding throughput through NIC-level classifica-
tion).

However there has been little evaluation to stress test
the extent to which modern NICs and their classifi-
cation capabilities match the requirements of software
routing from the standpoint of both, performance and
functionality. For example, as we discuss in the fol-
lowing section, there has been little evaluation of the
performance impact of scaling NIC-based classification
to large numbers of queues (i.e., a high mux/demux
fanout) or whether current classification options can
balance load under varied input traffic workloads. It is
perhaps worth emphasizing that high-speed packet pro-
cessing is not2 a common server application and hence
testing server NICs under routing workloads is not, to
our knowledge, on the “routine” checklist for NIC de-
signers; as such, it isn’t obvious that server NICs would
fare well when scrutinized through the lens of a router
designer.

This paper takes a first step towards such an eval-
uation. We focus on the latest generation of widely-
used server NICs and experimentally compare its per-
formance characteristics to that of an ideal “parallel
NIC” and a “serial only” NIC. We show that although
commodity NICs do improve on serial-only NICs (with
3x higher throughput on typical workloads) they lag
an ideal parallel NIC (achieving 30% lower throughput
than an ideal parallel NIC). We find similar gaps in the
classification features these NICs offer. We thus con-
clude with recommendations for NIC modifications that
we believe would improve their suitability for software

2yet!

routers.
The remainder of this paper is organized as follows: in

Section 2, we define the problem of parallelizing packet
delivery in software routers and the goals for an ideal
parallel NIC. Section 3 explains the methodology for our
experimental evaluation which we present in Section 4.
We conclude in Section 5.

2. PROBLEM DEFINITION

The high level question we aim to address in this
paper is quite simple: what is the most efficient way to
split R bps of incoming traffic across n cores?

Despite its simplicity, addressing this question repre-
sents a key challenge for the feasibility of high speed
software routers. In fact, spreading the traffic load
across multiple cores is typically unavoidable since a
single core may not be able to handle the line rate of
one port. To date, the best reported per core forward-
ing rate falls short of 10Gbps in the case of basic IPv4
routing (approx. 5 Gbps/core with 64B packets accord-
ing to [8]). Given that the current trends for processor
architectures is to increase the total number of cores
per processor rather than the single core performance,
it is clear that traffic must be split across multiple cores
to handle 10Gbps or above rates or any kind of more
advanced packet processing.

Once we split traffic across cores, we still need to
specify what properties make a design “efficient”. To
a first approximation, efficiency can be characterized
along two dimensions: performance and control. The
ideal performance is such that if one core is capable of
processing X bps, then n cores should handle nX bps.
In reality, there are many different reasons why this
ideal scaling may not be achieved in general (e.g., con-
tention for memory, cache or shared data structures).
However, in this paper we are interested in understand-
ing the overhead, if any, due just to mux/demux traffic
from the network interface to the cores. As we will see
in Section 4 the challenge is in the careful design of
packet processing experiments that allow us to isolate
the impact of the NIC on overall system performance.

By “control” we mean the ability to define which core
receives what subset of packets. This is important in the
context of IP forwarding to avoid introducing packet
reordering, for example. Other forms of fine grained
control on the manner in which traffic is split may in-
clude assigning priorities to traffic streams or making
sure that a given core processes traffic of a specific cus-
tomer.

In this paper we investigate two approaches available
today to split traffic: the first relies on hardware sup-
port in the form of independent queues and a packet
classification engine on the network interface; the sec-
ond is instead implemented in software with a single
core dedicated to the task of splitting traffic across the

other cores.

3. OVERVIEW OF CURRENT NETWORK

INTERFACES

To evaluate and understand the performance of cur-
rent off-the-shelf server NICs, we consider a simplified
view of the server components. Figure 1 shows a high
level view of the components that participate in packet
processing. Current high-end Intel Ethernet NICs3 use
a single controller that can handle two 10Gbps Ethernet
ports. The NIC communicates to the rest of the system
via the I/O Hub that terminates the PCIe lanes (8 lanes
are required for this type of network card). Finally the
I/O Hub transfers the packets to memory using Intel
Quick Path Interconnect links (or similar technologies
for other processor manufacturers – e.g. Hypertrans-
port in AMD systems).

Figure 1: Server components

To avoid contention when multiple cores access the
same 10Gbps port, server NICs can give the illusion of
a dedicated 10Gbps port per core using multiple hard-
ware queues. This way, each core accesses the hardware
queue independently (i.e. no need for any synchroniza-
tion with other cores) while the NIC controller is in
charge of classifying packets and placing them in one of
the many queues.

Today’s NIC provide a small set of classification al-
gorithms on the receive side [2]:

• hash-based (such as Receive Side Scaling, RSS)
where a hash function is applied to the header
fields of the incoming packets and its output is
used to select one of the hardware queues. This
is used to make sure each queue receives an equal
portion of the incoming traffic.

• address-based (such as VMDq) where each queue
is associated with a different ethernet address and

3All the results and discussions on this paper refer to the
Intel 10Gbps 82599EB controller [2] (codename “Niantic”).

the NIC accepts packets destined for any of the
ethernet addresses. This classification is commonly
used in conjunction with virtualization to give each
guest VM the abstraction of a dedicated interface.

• flow-based (e.g., Flow Director) where each hard-
ware queue is associated to a flow that can be de-
fined using any sequence of bytes in the packet
header. This allows for a very flexible flow defini-
tion and can support several thousands of concur-
rent flows.

For the purpose of this paper we will look only at the
first classification method (hash-based) where the hash
is computed on the classical 5-tuple made of protocol,
source and destination IP addresses and port numbers
if present (this is the same approach followed in [5] and
[8]). The reason behind this decision is that the address-
based and flow-based classification algorithms are not
well suited to routing workloads as they both limit the
total number of flows that are allowed in the system.

On the transmit side, the NIC is in charge of merging
the traffic from several hardware queues to the FIFO
buffer that feeds into the ethernet transmitter. The
hardware queues are served in a round-robin fashion
with the possibility of rate limiting each queue indepen-
dently or assigning traffic priorities following the IEEE
802.1p standard [1].

4. EVALUATION

In order to understand how off-the-shelf network cards
can support the requirements of high speed software
routers we focus on two questions:

1. How well does the packet forwarding performance
scale with the number of cores?

2. How well does the packet forwarding performance
scale with the number of queues?

Addressing the first question is really akin to a clas-
sical black-box approach to system performance evalu-
ation. As such, it measures the NIC and system perfor-
mance as well as the overhead introduced by the soft-
ware. The second question instead attempts at isolat-
ing the impact of multiqueue support in the NIC from
that of other system components. Our intent there is
to directly measure the performance degradation due to
multiplexing traffic across cores.

4.1 Experimental setup

For our study, we chose an Intel Xeon 5560 (Nehalem)
server with two sockets, each with four 2.8GHz cores
and an 8MB L3 cache. The system uses one 10Gbps
NIC with two ports installed in a PCIe2.0 x8 slot. Our
server runs Linux 2.6.24 with Click[9] in polling mode—
i.e., the CPUs poll for incoming packets rather than
being interrupted.

The input traffic is made of 64 byte back-to-back
packets—the worst-case traffic scenario and it is gener-
ated by a separate 8-core server. We consider only one
type of simple packet processing that we call minimal

forwarding. With minimal forwarding traffic arriving at
one of the NIC ports is always forwarded to the other
physical port of the same NIC. We chose this simple test
because we are interested in measuring the raw perfor-
mance of the network card without introducing any side
effects due to the packet processing software.

With this setup, our primary performance metric is
the maximum forwarding rate we achieve, reported in
terms of packets-per-second (pps).

4.2 Forwarding Performance

To address the first question, we performed a set of
experiments using a single 10GbE port. These experi-
ments involve increasing both the numbers of CPU cores
dedicated to packet processing as well as the number of
hardware queues allocated on the NIC. In all experi-
ments the number of cores is equal to the number of
queues and each core has a dedicated receive and trans-
mit queue pair. This guarantees that there is no con-
tention across cores or shared memory data structures.
This setup is the one commonly recommended when
using modern server NICs.

We then compare the performance achieved using
multiple hardware queues against two natural alterna-
tives: i) a purely software solution (“serial NIC”) that
assumes that the NIC has no multiple queue support;
ii) an “ideal NIC” scenario where each core has com-
pletely dedicated access to the 10GE port (i.e., no traffic
splitting/merging necessary). This is an idealized view
of the system as it assumes there is no overhead in run-
ning an application in a multicore system compared to
a single core server.

The serial NIC does away with the use of the NIC
hardware queues and performs traffic splitting and merg-
ing in software. In all such experiments, one core is
in charge of the receive path, one core is in charge of
the transmit path and the remaining cores perform the
actual packet processing. In the case of one core ex-
periments, the same core handles both the receive and
transmit side. The intent here is to understand the role
hardware queues in modern NICs play in high speed
software routers. We call this set of experiments “se-
rial NIC” given that the NIC behaves as a simple FIFO
packet buffer.

The “ideal NIC” scenarios – where no hardware or
software overhead in splitting traffic is assumed – is also
drawn for reference purposes only. The performance of
the ideal NIC is a computed, not measured, value—we
consider the maximum forwarding rate the system can
reach with just one core and then multiply that rate by
the number of cores until we reach the line rate for a

10Gbps Ethernet port, i.e., approximately 14.9 Mpps.4.
Figure 2 shows the aggregate forwarding rate in mil-

lion of packets per second with an increasing number of
cores. Figure 3 plots the same data normalized by the
number of cores.

0

5

10

15

20

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

Number of Cores

Current NIC - 1 port
Serial NIC - 1 port
Ideal NIC - 1 port

Figure 2: Aggregate forwarding rate with in-

creasing numbers of cores and queues

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7 8

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

Number of Cores

Current NIC - 1 port
Serial NIC - 1 port
Ideal NIC - 1 port

Figure 3: Per-core forwarding rate with increas-

ing numbers of cores and queues

From the figures we can derive two conclusions. On
the one hand, multiple hardware queue support in the
NICs is a clear improvement over software-only solu-
tions. The performance of current NICs is more than
3x higher than software-only serial NICs.

On the other hand, the overhead of current NICs in
handling multiple queues is significant. The per-core
performance of current NICs is 30% lower than what

4Note that the maximum packet rate on a 10Gbps Ethernet
port is not 19.5 Mpps (i.e., 1010/(8 ∗ 64)) because the stan-
dard requires a 20 byte long spacing between back-to-back
packets.

an ideal NIC would predict. Yet, these experiments do
not allow us to identify the source of the overhead. It
could be in the NIC itself or in other system resources
(e.g., memory, PCI bridge, etc.) that are shared across
the cores.

In order to isolate the impact of the NIC alone, we
should measure the packet forwarding performance when
all system components are kept fixed (i.e. number of
cores, PCIe lanes, controllers, etc.) and the only change
is in the number of hardware queues. Specifically, this
means that we would ideally use only one controller and
one PCIe slot (8 lanes) while varying the mapping be-
tween hardware queues and physical 10Gbps Ethernet
ports (e.g., 8 queues on 1 port, 4 queues on 2 ports, 2
queues on 4 ports, etc.)

Unfortunately current NIC hardware does not pro-
vide enough flexibility to explore the entire parameter
space. The Niantic controller can handle only two phys-
ical 10Gbps ports. That allows us to experiment only
with 8 queues or 4 queues per port (so that the number
of cores remains constant).

To overcome this limitation and still be able to un-
derstand the impact of a growing number of hardware
queues, we compare the case of using one physical port
and Q queues (where Q ranges from 2 to 8) to the case of
using two physical ports and Q/2 hardware queues per
port. In both cases the number of cores is constant and
equal to Q, and only one ethernet controller is used. We
will then measure the performance degradation (if any)
in using a larger number of queues per physical port —
if hardware queues were to present no overhead, there
should be no performance degradation between using
two ports and Q/2 queues per port versus one port and
Q queues.

0

5

10

15

20

 2 4 6 8

T
h
ro

u
g
h
p
u
t
(M

p
p
s
)

Total Number of Queues

2 ports
1 port

Figure 4: Comparing the aggregate forwarding

rate varying the number of hardware queues per

port. The number of cores is equal to the total

number of queues so that one core always has

one and only one dedicated hardware queue.

10

20

30

40

50

 2 4 6 8F
o
rw

a
rd

in
g
 r

a
te

 d
e
g
ra

d
a
ti
o
n
 f
ro

m
 t
w

o
 p

o
rt

s
 t
o
 o

n
e
 p

o
rt

 (
%

)

Total Number of Queues

Figure 5: Ratio of the forwarding rate varying

the number of hardware queues per port. The

number of cores is equal to the total number of

queues so that one core always has one and only

one dedicated hardware queue.

Figure 4 and 5 show the forwarding performance with
varying the number of hardware queues per port (Q =
2, 4, 6, 8). The graphs clearly indicate that a smaller
number of queues lead to better performance. The for-
warding performance scales almost perfectly across mul-
tiple cores when using two ports: 6.3 Mpps with 2 cores,
23.2 Mpps with 8 cores. Using a single 10G port (but
the same controller) the forwarding rate peaks at 11.7
Mpps with 4 queues (and 4 cores) and then degrades
a little (by less than 1 Mpps) as the number of queues
grows.

We can derive a few conclusions from these two fig-
ures:

• the NIC controller, the cores and the PCIe 8-lane
slot can handle 23.2 Mpps: well above the line rate
of a 10 Gbps interface. The performance bottle-
neck that we observed in Figure 2 is therefore not
within any of those components.

• each 10Gbps physical port cannot run at the max-
imum packet rate. The maximum rate we have
been able to measure in any experiment is indeed
11.7 Mpps below 14.9 Mpps, the maximum packet
rate of a 10 Gbps Ethernet port. Two physical
ports can run at about 23.4 Mpps (i.e. 2x 11.7
Mpps).

• there is an overhead in adding more hardware queues
as highlighted by Figure 5 for 2 and 4 hardware
queues. However, this overhead is relatively small
leading to approx 10% loss in forwarding rate.

In summary, we have been able to measure the over-
head of multiple queues and isolate where the bottle-
neck is in the system: between the NIC controller and

the physical port. At this time we do not have access to
the detailed design of the NIC controller to PHY con-
nection but we conjecture that handling of the FIFO
buffer that accomodates the packets right off the wire
could be the reason for the loss in performance.

It is important to note that this could also be a de-
liberate design decision given that the NIC under study
is designed for server platforms. Its design is evaluated
by how efficiently it can terminate TCP or UDP net-
work streams. In our experiments we have always used
a worst case workload (64 byte long, back to back pack-
ets, little or no payload). That is a traditional bench-
mark for routing but of very little interest for traditional
server applications. Reaching 11.7 Mpps means that at
an average packet size of 86 bytes this system could
fully saturate a 10Gbps Ethernet port. However, fol-
lowing the same rationale, it is foreseeable that packet
forwarding may become a workload of interest for NIC
designers as software routers become a reality in the
telecommunication industry.

4.3 Functionality

We focus now on whether commodity NICs are well
suited for software routing at the functional level. We
start by summarizing the functionality NICs support
today and then introduce a “wishlist” of new features
we believe would further improve the suitability of these
NICs for packet processing.

NIC functionality today.
Beyond multiple hardware queues, current NICs im-

plement a plethora of mechanisms that are specifically
designed to offload the cores of some of the most basic
packet processing operations. As we said before, how-
ever, most of these mechanisms are intended for server
applications and as such focus on TCP stream process-
ing (e.g., TCP Checksum offload, TCP Receive Side Co-
alescing, TCP timers, etc.) or for virtualization (e.g.,
VT-d, virtual machine device queues, etc.).

A few features that are directly applicable to soft-
ware routers include: (i) handling a large number of
hardware queues (up to 128) to spread traffic across
many cores; (ii) flow-level filters (hash-based or up to
8K flows) that can be used to limit packet reordering;
(iii) VLAN support; (iv) rate limiting and priorities
(compliant with IEEE 802.1p); (v) IPsec encryption
and packet encapsulation.

What follows is a simple list of additional features
that are not currently present in server NICs but that
we believe could represent a useful initial set of feature
for a next generation NIC were packet forwarding and
routing is a first class design concern.

Runtime configuration.
One of the major drawbacks of most of today’s NIC

features is that they cannot be modified quickly while
the NIC is processing incoming traffic. Many features
even require a NIC reset in order to be reconfigured.

There are instead many network scenarios where it
would be desirable to change the configuration at run-
time, for example:

• If the current hash function leads to a poor balance
of flows across cores, one would like to change the
function (maybe even just between a pre-configured
set of hash functions). This could be even done
automatically by the NIC controller as it realizes
that one hardware queue is full or nearly full.

• If the traffic load is low enough that a smaller num-
ber of cores could handle all of the packet process-
ing needs, it would be useful to reduce the number
of hardware queues. This could lead to a more
energy efficient design as one could immediately
turn off cores that where assigned to queues that
are removed.

More general classification.
Current NICs support classification on fixed fields

(such as port numbers and source/destination IP ad-
dresses) or with a list of exact match rules on the eth-
ernet address or on a packet offset (but then limited to
a small number of flows).

For new protocols or applications, it might be useful
to give the programmer a more fine grained (or even
programmable to a certain extent) control on the clas-
sification. For example, one could envision packet clas-
sification techniques that are designed so that one core
only receives packets destined to a subset of the pre-
fixes in the routing table. This way the route lookup
operation could be optimized by splitting the routing
tables across cores to improve cache locality – this is of
particular importance given the current trend towards
non-uniform memory architectures (NUMA).

Above we have very briefly listed some of the fea-
tures that would benefit software routers if present in
off-the-shelf NICs. Future work includes exploring effi-
cient hardware implementations for these features and
the appropriate abstractions or programming model by
which NICs expose the functionality such features of-
fer. The intent is to find the minimal set of features
that could benefit software routers without requiring
radical changes to current NICs design practices.

5. CONCLUSIONS

We presented a study of the performance of modern
server NICs in presence of packet forwarding workloads.
We highlighted the challenges involved in isolating the

contribution of the different system components to the
overall packet processing performance.

Our investigation has shown the advantage that multi-
Q NICs present compared to traditional NICs. We
have also shown limitations in the design of current
NICs both in the form of the maximum rate per port
that can be achieved and in performance degradation
(though limited) when increasing the number of hard-
ware queues that receive traffic.

In future work, we plan to investigate the feasibil-
ity and value of more advanced NIC features. Our
goal would be to identify new features that benefit soft-
ware router workloads without incurring significantly
increased manufacturing costs, thereby preserving the
high volume, off-the-shelf nature of current server NICs.

6. REFERENCES
[1] Intel 82599 10 GbE Controller Datasheet.

http://download.intel.com/design/network/
datashts/82599 datasheet.pdf.

[2] Intel 82599EB 10 Gigabit Ethernet Controller.
http://ark.intel.com/Product.aspx?id=32207.

[3] R. Bolla and R. Bruschi. PC-based Software Routers:
High Performance and Application Service Support. In
Proceedings of the ACM SIGCOMM Wokshop on
Programmable Routers for Extensible Services of
TOmorrow (PRESTO), Seattle, WA, USA, August
2008.

[4] R. Bolla, R. Bruschi, G. Lamanna, and A. Ranieri.
Drop: An open-source project towards distributed sw
router architectures. In GLOBECOM, pages 1–6, 2009.

[5] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy. RouteBricks: Exploiting Parallelism to
Scale Software Routers. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP),
2009.

[6] N. Egi, A. Greenhalgh, mark Handley, M. Hoerdt,
F. Huici, and L. Mathy. Fairness Issues in Software
Virtual Routers. In Proceedings of the ACM
SIGCOMM Workshop on Programmable Routers for
Extensible Services of TOmorrow (PRESTO), Seattle,
WA, USA, August 2008.

[7] N. Egi, A. Greenhalgh, mark Handley, M. Hoerdt,
F. Huici, and L. Mathy. Towards High Performance
Virtual Routers on Commodity Hardware. In
Proceedings of the ACM International Conference on
Emerging Networking EXperiments and Technologies
(CoNEXT), Spain, December 2008.

[8] S. Han, K. Jang, K. Park, and S. Moon. PacketShader:
A GPU-accelerated Software Router. In Proceedings of
the ACM SIGCOMM Conference, 2010.

[9] E. Kohler, R. Morris, B. Chen, J. Jannoti, and M. F.
Kaashoek. The Click Modular Router. ACM
Transactions on Computer Systems, 18(3):263–297,
August 2000.

